AD-A258 901 -
RREEANEIE

(‘[\/' CC

o 11
~'29000-€6. . ¢

AFIT/GCS/ENG/92-04

Formalization and Transformation of Informal Analysis Models

Into Executable REFINETM Specifications

THESIS
Mary M. Boom Bradley D. Mallare
Captain, USAF Captain, USAF
AFIT/GCS/ENG/92-04

Approved for public release; distribution unlimited

93 1 04 165

Form Approved
REPORT DOCUMENTATION PAGE o e s oa0188
e S s v : ! - g t he fime " 27 reviewing (ASTPLCTIONS, t@Ari™ =3 2ashing gata (oLt
PUDHC "EROrLAT Urgen TOr Thiy SHRCUNN SEATCeMation 1y 3st:mated 10 3varage ! hour ser tesonse, ncuaIing t " b Lt
qj?h,;rm.x ,m.": MAUNT pAIng e 2ata neeged, and COMPISting ang reviewing the cOilection ot Information Send cemments reqarding this durden Sstimate o= 3nv Jther aspect 27 TNy

collection 2t atarmaton. ~cuaing suggesticons tOr requang this Surcen. 19 Washingron Headquarters Services, Cirectorate “or 'n12rmation Qoeraticns ana eports, 1215 ,arversan

Dawis prgraay, Suite 1204 Ammngton, /4 22292-4302. ana te the Othice of Management ana Suaget, Paperwork Reaucticn Project (G774-01488), \Wasningten. SC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE A!!D DATES COVERED
December 1992 Master’s Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
FORMALIZATION AND TRANSFORMATION OF INFORMAL
ANALYSIS MODELS INTO EXECUTABLE REFINETM
SPECIFICATIONS

6. AUTHOR(S)
Mary M. Boom, Capt, USAF

Bradley D. Mallare, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADODRESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER
Ir rorce Institute of lechnology, AFIT/GCS/ENG/”D-M

|
|

AND ADDRESS(ES 10. SPONSORING / MONITORING
9, DSPONISOR‘I;E _/tMONITORING AGENCY NAME(S) (ES) SPONSORING MONITORIN
ouglas White
RL/C3CA

Rome Laboratories
Griffiss AFB, New York

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

This research developed and implemented an automated technique for translating informal specifications into
formal, executable specifications. A Unified Abstract Model (UAM) was developed to combine the information
contained in Entity Relationship, State Transition, and Data Flow Models into a concise, object-based repre-
sentation. The UAM forms the basis for defining a formal language, the Object Modeling Language (OML),
used to capture the information contained in the UAM. By using OML, we were able to develop an automated
translation process to convert informal specifications into executable, formal specifications. The Software Refin-
ery Development Environment enabled us to easily develop a parser that translates an OML specification into
an abstract syntax tree. A Translation Executive transforms the information contained in the abstract syntax
tree into an executable, REFINE specification. The specifier can quickly validate the correctness of the informal
specification by testing its behavior. Additionally, the automatically generated executable specification serves
as a basis for formal software design and future development. Two examples, a home heating system and a
library database, were used to validate this formalization and transformation process. Our results clearly show
the complementary nature of informal and formal methods, and provides a significant step towards formalizing
the software development process.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Automatic Programming, Software Engineering, Simulation Languages, 350 .
Specifications, Computerized Simulation, Formal Methods, Object-Based 16. PRICE CODE

Specification Language, Executable Specifications

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRAC™
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL
wWoN /36u-01-280-5500 Standard Form 298 (Rev 2-49)

Prescriomd by A4S Sta 239-'3
298-102

AFIT/GCS/ENG/92-04

Formalization and Transformation of Informal Analysis Models

Into Executable REFINETM Specifications

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Engineering

Accession Yor

—
. Availability Codes
E Avail and/or

NTIS GRAAI C.d
DTIC TAB O
Unannounced a

Justification |

By
 Distribution/

Dist Special

R \' e

Mary M. Boom, B.S.E.E. Bradley D. Mallare, B.S.E.E.
Captain, USAF Captain, USAF
December. 1992 D1Ic QTaLrry ¢

Approved for public release; distribution unlimited

‘X CPICTED 1

Acknowledgments

I wish to thank Major Paul Bailor for sharing his vision, giving direction and guidance when
needed, and providing challenging research. Thanks to our committee members, Major David
Luginbuhl and Captain John Robinson, for all their perceptive comments and suggestions, and to Dr
Thomas Hartrum and Major Mark Roth for their insight. I’d also like to acknowledge the members
of the Formal Methods Group and other denizens of the Signal Processing/ Graphics/ Software
Engineering Lab for their support and tolerance of our somewhat eclectic working environment. In
particular, thanks to Mary Anne Randour for her encouragement, her help with Lisp and REFINE,
and her dynamite oatmeal-chocolate-chip cookie recipe. I also owe many thanks to my family for
their support (and pretending to understand my research past the first two sentences). Lastly,
thanks, Brad, for constantly pushing forward (it almost kept us on schedule) and for patiently

working through all the revisions, etc.

Mary M. Boom

I owe many thanks to numerous people for supporting me during this research effort. Fore-
most, I would like to give thanks to the Lord Jesus Christ who gives me all things. He is always
faithful, His strength is perfect, and it is through Him that all things are possible. My wife, Lynn,
has been a pillar of strength for me. Her unselfish giving and love has inspired me more than she
knows. I am truly blessed to have an incredible wife. I am grateful to our thesis advisor, Major
Paul Bailor, who gave just the right amount of guidance to make this effort both educational and
fruitful. He is an asset to the Air Force. Certainly, my thesis partner, Mary, deserves great credit.
I appreciate her flexibility, hard work, and great attitude. It was fun (really!). Finally, I would like
to thank our other committee members and the formal methods research group. Everyone would

love formal methods if they could work with you!

Bradley D. Mallare

Table of Contents

Page

List of Figures e e viii
Listof Tables e x
Abstract e e e e e e e e e xi
I Introduction e 1
1.1 Background 1

12 Problem 5

1.3 Scope e 8

1.4 Assumptions i e e 9

15 Approach 9

II. Literature Review 13
2.1 Imtroduction 13

2.2 Review of Specification Languages 14

2.2.1 Object-Based Languages. 16

2.2.2 Algebraic and Miscellaneous Languages. 19

2.2.3 Summary of Language Assets 21

2.3 Transforming Informal Languages to Formal Languages 24

2.3.1 Structured Analysis to Vienna Development Method. 24

232 SADTtoRML.. 26

233 SADTtoREFINE. 26

24 Conclusion. L 28

iii

Page

III. Requirements Analysis e 30
3.1 Imtroduction 30

3.2 Evaluation of Informal Models 33

3.2.1 DataFlow Model Analysis 33

3.2.2 Entity Relationship Model Analysis 35

3.2.3 State Transition Model Analysis 36

3.3 UAM Architecture Development Rationale 37

3.4 Unified Abstract Model 38

341 Objects e 42

342 Associations. 43

35 Summary e e e e e e e e e e e e 48

IV. The Object Modeling Language 49
41 Background e 49

42 OMLGoals e 53

4.3 OML Syntax and Semantics 60

4.4 Composing an OML Specification from an Informal Model 67

4.4.1 How to build a specification. 67

4.5 ExampleProblems 71

4.5.1 The Home Heater System Problem. 71

4.5.2 The Library Problem. 78

46 Summary e e e e e e 84

V. Executable OML Specifications 85
5.1 Imtroduction 85

5.2 OML Compiler Generation 88

5.3 [Executable Specification Methodology 91

5.3.1 State-Based Model Execution. 91

iv

5.3.2 Process-Based Model Execution. 94

54 Translation e 97
54.1 Entities. 99

54.2 Relationships. o0 oL 102

5.4.3 States. e 103

544 Events. 104

545 Behaviors. L e 105

5.4.6 Processes. e 108

547 Flows. 112

548 Stores. e 115

549 RelationTable. 119

5.4.10 Constraints. 120

5.5 The Value of Executing a Specification 122
5.6 Summary e e e e 124
VI. Conclusions and Recommendations 126
6.1 Objectivesand Results. 126
6.2 Recommendations for Future Research 128
6.2.1 Improvements to the Existing Translation Tool. 128

6.2.2 Additions to the Translation Tool. 129

6.2.3 Supporting Research., 130

6.3 Concluding Remarks. 133
Appendix A. Summary of OML Syntax and Semantics 134
Al Syntax. e e e e 134
A2 Semantics 140
A3 OML DomainModel 142
A4 OMLGrammar i 158

Appendix B.

Appendix C.

B.1

B.2

C.1

C.z2

Appendix D.

Appendix E.

D.1

D.2

D.3

D.4

D.5

D.6

E.1

E.2

E.3

E.4

E.5

Ada (Subset) Program Design Language (PDL), 166
OML with Ada PDL DomainModel 171

B.1.1 OML DomainModel 171

B.1.2 Ada PDL DomainModel 179
OML with Ada PDLGrammar 186

B.21 OMLGrammar. vt ... 186

B.2.2 AdaPDL Grammar 194
Object Modeling Language REFINE Implementation 199
Translation Software 199
Utilitles o e 223
Home Heater Problem 244
Heater Problem Analysis 244
Problem Statement L, 244
Entity Relationship Model 245
State Transition Model 246
Heater Problem OML Specification 250
Heater Problem REFINE Executable Specification 262
Library Problem Analysis 275
Problem Statement 275
Entity-Relationship Models 276
DataFlowModels 276
Library Problem OML Specification 282
Library Problem REFINE Executable Specification 296

vi

Appendix F.
F.1
F.2
F.3
F.4
F5
F.6
F.7
Bibliography . .
Vita
Vita

OML User's Manual 317
Symopsis e e e e e 317
Required Software L. 317
Assumptions L e 318
Generating an Executable Specification, 318
Using the Executable OML Specification 318
Diagnosing Errors Lo oo L 320

F.6.1 Errors detected while parsing. 320

F.6.2 Errors detected during compilation. 320

F.6.3 Errors revealed during execution., .. 322
Test Specification 324
.. 335
.. 337
.. 338

vii

Figure

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.

26.

List of Figures

Distribution of Requirements Errors by Type (9:26)
Informal to Formal Translation Effort
Comparison of Specification Languages
Informal Model to REFINE translation process
Unified Abstract Model L
Unified Abstract Model (With Referential Attributes Removed)
OML: Bridging the Gap
Translation Process: Informal Requirements to Executable Specifications
Home Heater Entity Relationship Model
Home Heater State Transition Model
Library Problem Level 0 Data Flow Diagram
Library Problem Level 1 Data Flow Diagram
Steps Required for Translation versus Simulation
State Based Model Execution Methodology
Process Oriented Model Execution Methodology
Hierarchy Detail with Object Mappings
Hierarchy Detail with Object Mappings, Continued
Hierarchy Detail with Object Mappings, Continued
Hierarchy Detail with Ubject Mappings, Continued
Hierarchy Detall with Object Mappings, Continued
Hierarchy Detail with Object Mappings, Continued
Hierarchy Detail with Object Mappings, Continued
Home Heating System: Entity RelationshipModel
Home Heating System: State Transition Model
Library: Entity Relationship Model (6:F-12)

Library: Context Diagram (6:F-8)

Page

21
32
4]
46
50
55
73
76
80
81

86

Figure
27.
28.
29.

30.

Page
Library: Level 0 e 278
Library: Level 1 0 e e 279
Library: Level 2 (6:F-10) 280
Library: Level 3 (6:F-11), 281

ix

Table

List of Tables

Page
Cost to Repair Software Errors at Various Stages in Life-cycle (9:23) 2
SADT to REFINE Language Mappings 27
Mapping Informal Model Elements To Unified Abstract Model Elements 39
Mapping OML Objects into REFINE Executable 92
Excerpt from the Library Problem Relation Table 110
Software Required to Suppo . OML’s Translation and Execution 317
How to Generate an Executable Specification 319

AFIT/GCS/ENG/92-04

Abstract

This research developed and implemented an automated technique for translating informal
specifications into formal, executable specifications. A Unified Abstract Model (UAM) was de-
veloped to combine the information contained in Entity Relationship, State Transition, and Data
Flow Models into a concise, object-based representation. The UAM forms the basis for defining
a formal language, the Object Modeling Language (OML), used to capture the information con-
tained in the UAM, and therefore ERMs, DFMs, and STMs. By using OML, we were able to
develop an automated translation process to convert informal specifications into executable, formal
specifications. The Software Refinery Development Environment enabled us to easily develop a
parser that translates an OML specification into an abstract syntax tree. A Translation Executive
transforms the information contained in the ahstract syntax tree into an executable, REFINE spec-
ification. By testing the behavior of the executable specification, the specifier can quickly validate
the correctness of the informal specification. Additionally, the automatically generated executable
specification serves as a basis for formal software design and future development. Two examples,
a home heating system and a library database, were used to validate this formalization and trans-
formation process. Our results clearly show the complementary nature of informal and formal

methods, and provides a significant step towards formalizing the software development process.

xi

Formalization and Transformation of Informal Analysis Models

Into Executable REFINETM Specifications

I. Introduction

1.1 Background

The elicitation and specification of software requirements is critical to the successful devel-
opment of a software system. It is crucial that the user’s needs and problems be well understood,
analyzed, and properly documented in requirement specifications. Requirement errors can lead
to a system that is over budget, behind schedule, and one that does not meet the user’s needs
(9:27). Primarily, software requirements are informally specified via natural language documents
(i.e., English text) (7:2) and graphical models (e.g., software analysis models — data flow, entity

relationship, state transition, etc.).

A study on software projects conducted by Boehm, concluded that 54% of all software project
errors are not discovered until after the coding and unit testing stages. Furthermore, of these errors,
45% are directly attributable to errors in the requirements and design stages (9:24). DeMarco
also performed a study of software errors and reported that 56% of all errors detected during a
program originate during the requirements and design phases (9:24). These two independent studies
underscore the importance of the requirements specification process. Not only are more than 50%
of all software errors made during the early stages of requirements specification and design, but
they also are not being discovered until late in the software lifecycle. This late discovery of software
problems directly contributes to the sky-rocketing costs of software systems. Table 1 taken from
Davis’ textbook (9:23) shows the relative cost of fixing an error during the various stages of the

software lifecycle. In this table, the repair costs are relative to the cost of detecting and fixing an

Stage Relative Cost of Repair
Requirements 0.1-0.2
Design 0.5
Coding 1
Unit test 2
Acceptance test 5
Maintenance 20

Table 1. Cost to Repair Software Errors at Various Stages in Life-cycle (9:23)

error in the coding phase. Clearly, a great deal of money and time could be saved by discovering

requirement errors during the requirements stage.

There are several factors that contribute to requirements errors. Figure 1, also taken from
Davis’ text, illustrates the distribution and types of errors made during the requirements stage
for the Navy’s A-TE aircraft program. As seen in Figure 1, incorrect requirements are responsible
for nearly 50% of all requirement errors. These errors frequently occur when the specifier does
not correctly understand the user’s problem, or when users do not correctly understand their
own requirements and thus do not convey them correctly to the specifier. The second highest
cause of requirement errors is simply the omission of necessary requirements. Here, the specifier
either captures only part of a requirement or does not capture any of the requirement in the
specification. This can also be attributed to users not knowing their need for a requirement.
Inconsistent requirements are the next most prevalent type of errors. These occur when two or
more requirements specify conflicting information. Ambiguous requirements are also responsible
for requirements errors. Here, the requirements may correctly specify the user’s needs, but because
of difficulties in clearly stating complex requirements in natural language, and because of diversity
in reader backgrounds, these informal specifications are often misinterpreted from the user’s original

intentions. Lastly, misplaced requirements are also responsible for requirement errors. These errors

70 — —
60 — —
50 L 49%]
o
o
S 40— |
o
X 31%
30 — —
20 — —
13%
10 — —
5% o
incorrect omission inconsitency ambiguity misplaced
fact requirement
(wrong section)

arror type

Figure 1. Distribution of Requirements Errors by Type (9:26)

are a result of necessary requirements being associated with the functionality of the wrong system
components in the specification. Unfortunately, these requirement errors are often not discovered
until late in development (e.g., testing) at which point (as illustrated in Table 1) they are very

expensive and time consuming to correct.

In spite of these shortcomings of requirement specifications, informal specifications remain
the most widely used method for specifying software system requirements. Informal specifications
have several key strengths. Since informal specifications are English-like in nature and use graphical

techniques, they:

e are easy to learn and understand,

e provide an ideal mechanism for eliciting requirements, and

e communicate the specifier’s understanding of requirements back to the user. (13, 27)
As previously stated, however, informal specifications can be imprecise and ambiguous.

Formal specifications are another method for specifying software requirements that are gaining
in popularity and respect. Formal specifications are mathematically based and possess a formal
notation to model system requirements. Their mathematical nature and formal notation provide

the following strengths:

e requirements are concisely and precisely specified,
e requirements are clear and unambiguous, and
e specifications are suitable for mathematical analysis. (13, 27)

Clearly, formal specifications can be used to improve the accuracy of the requirements spec-
ification process. However, formal specifications also have their weaknesses. Formal specifications
are mathematically complex and require a high degree of mathematical competence. Consequently,
they are difficult to learn and understand. Furthermore, because of their complexity, they are not
a good mechanism for communicating with the user. Thus, formal specifications by themselves are

not entirely sufficient for specifying a software system.

The overall objective of this thesis was to develop a methodology for bridging the gap be-
tween informal and formal specifications to capitalize on their respective strengths. Frequently,
the two methods are viewed as competing techniques where only one method or the other can be
used. In examining their respective strengths and weaknesses, however, it is clear the two methods
are complementary in nature. Informal specifications are effective for eliciting requirements and
communicating with users while mathematically based, executable formal specifications provide

a method for resolving requirement misinterpretation, validating requirement specifications, and

serving as a basis for automated code generation. This thesis focuses on formalizing informal spec-
ification methods by using a formal language to capture informal requirements and to serve as a
basis for automated translation into an executable formal specification. By converting an informal
specification into an executable form, we can validate the behavior of the informal specification to

uncover and correct requirement errors very eatly in the software lifecycle.

1.2 Problem

Informal specification techniques consist of textual documents and graphical models that
describe the information content and behavior of a software system. Diagrams are useful for
expressing the most abstract views in informal specifications. They allow people to understand and
communicate easily about large complex ideas. (29) However, even when diagrams are decomposed
to show greater amounts of detail, they still must be supplemented with text to expand on abstract

ideas. If written in a natural language, these textual specifications can be ambiguous.

Natural languages are extremely expressive and are often used to provide detailed descrip-
tions needed for system specifications. However, these languages are not precise enough to ensure
a unique meaning for each description. Specifications can also be misinterpreted because of the
reader’s or author’s frame of reference. Natural language allows the specifier to make inappropriate
associations between requirements and implementation-specific details. These actions should be
reserved for the design stage. Also, an individual reading a natural language specification may
develop an understanding of the problem in terms of his previous experience. The intent of the
specification is corrupted because it has not communicated the correct information. The specifi-
cation has failed its purpose of being an initial system description. Like blueprints and schematic

diagrams, software specifications should provide a true representation of the planned system.

Even if a formal technique is used to concretely express software specifications, verifying the

specification’s correctness and completeness is still a problem. If the technique is manual, verifi-

cation can be accomplished by extensive examination and cross-referencing. This will ensure the
specified system completely captures all stated requirements and is consistent with itself. Cor-
rectness can be assessed by performing partial mathematical verifications. This process is very
time-consuming and does not guarantee perfect program operation unless each verified segment is
totally independent (highly unlikely) or all dependencies have been accounted for in the verifications

(12).

Therefore, neither informal specification nor manual formal specification techniques can guar-
antee that the specified system will completely or partially meet the user’s expectations. However,
one way of allowing the user to test whether the specification meets his expectations is to employ

an automated system that allows the specifier and user to execute the specification (2).

A mathematically based specification can reduce a set of requirements to data items (objects)
and their relationships. System behavior can be represented by using pre- and post-conditions,
decision tables, or program design language. Use of a formal specification language, rather than
English, can reduce the specifier’s opportunities to introduce inconsistencies and ambiguities into
the specification and to influence the specification toward a specific design or platform. An ideal
formal specification captures all the detail of its informal counterpart, minimizes the chance of
misinterpretation or ambiguity, and only specifies “what” must be accomplished and not “how”
something is to be accomplished. A method for transforming the information contained in informal
modeling techniques into formal executable specifications is needed to improve the developer’s
ability to build the correct product. Figure 2 depicts one way of accomplishing this transformation.

This diagram is useful in visualizing the objectives of this thesis.
The objectives of our research were:
1. To establish a minimal set of constructs that represent the content and behavior of informal

analysis models, specifically Entity Relationship Models (ERM), Data Flow Models (DFM),

and State Transition Models (STM).

Informal
Analysis —
Models

Automated
Translation
Validation

A A

Object-Based
Language
Representation

Automated

L Translation
Validation

A 4

Executable
Refine
Object-Base

Figure 2. Informal to Formal Translation Effort

2. To develop a methodology for translating the information contained in these informal models

into a formal, object-based language.

3. To develop a tool to translate formal, object-based specifications into an executable environ-

ment.

4. To validate the process of translating informal specifications into formal, executable specifi-

cations.

The REFINE Software Development Environment, developed by Reasoning Systems Inc., served

as our executable environment. It is composed of a user interface, the REFINE language, and a

set of software development tools. The REFINE language, or simply REFINE, is a wide spectrum
language that uses abstract constructs such as set theory, logic, transformation rules, and pattern
matching. Since REFINE is an executable language and enables specifications to be expressed at
any desired level of abstraction, it supports the development of executable specifications. The
REFINE environment can also manipulate specifications to revise requirement specifications and

initiate program development using a program transformation approach. (22:1-2)

Problem Statement
To transform the information contained in informal software specifications into a mathemat-
ically based, executable formal specification that can be used to verify anticipated system

behavior and can serve as a basis for formal software derivation.

1.3 Scope

The primary goal of this thesis was to develop an automated process for transforming an
informal requirements model, specified in an object-based language, into an executable formal
specification modeled in the REFINE object-base. Since process and state behaviors can vary
widely, they were represented as onei or more of the following: Program Design Language (PDL),
decision tables, or pre- and post-conditions. A subset of the Ada Language was used as the PDL

standard for this research.

Figure 2 distinguishes two major steps for automatically translating the information repre-
sented by informal analysis models into executable REFINE specifications. Due to time constraints,
we manually translated the information contained in informal analysis models into our object-based
language. However, the methodology used to model the information in the object language, along
with the object language’s formal structure, should easily enable future automated translation.
Automating this process will be accomplished in future research. An automated process was devel-

oped, however, to transform the object-based language representation of an informal specification

into a REFINE executable specification. Validation of this transformation was accomplished through

test case generation and inspection.

1.4 Assumptions

This thesis was an extension of research conducted by two previous Air Force Institute of

Technology (AFIT) students. Capt Randall Lee Douglass’ thesis objective was to

Determine the feasibility of developing an automated mechanism that transforms a
given SADT requirement analysis specification into an equivalent REFINE specification
(10:4).

His results demonstrated that a manual transformation is possible between SADT specifications
and their corresponding representation in REFINE. After analyzing his code, reviewing his report,
and executing his test cases, it was logical to assume his transformations were correct and thus
could be used as a basis for assisting in our automatic transformation. Capt Don Blankenship
researched the manual transformation of several other analysis models, such as Data Flow Models
(DFM), Entity Relationship Models (ERM), and State Transition Models (STM), into REFINE (6).
His efforts also demonstrated that informal models can be accurately represented in REFINE. This,
too, provided strong indications that an automated transformation from informal specification
models into REFINE was feasible. While Douglass’ and Blankenship’s research both proved the
value of developing executable REFINE specifications, neither effort focused on automating the

process of translating informal specifications into formal specifications.

1.5 Approach

The following approach was used to reach the objectives of this thesis.

1. Conduct a literature search of currently available specification languages.

2. Analyze the information modeled by ERMs, STMs, and DFMs.

3. Develop a Unified Abstract Model (UAM) capable of modeling information contained in the

aforementioned informal analysis models
4. Select a requirements specification language to support the UAM

5. Develop a process for converting the requirements language into a REFINE Abstract Syntax

Tree (AST)

6. Manipulate the AST to simulate behavior of the specification and/or develop equivalent

REFINE source code.

First, a detailed literature search was conducted to identify object-based languages capable
of capturing the information modeled by ERMs, DFMs, and STMs. We believe that object-based
languages are better suited for accurately modeling real-world problems, they promote a better
description of what is required as opposed to how to meet a requirement, and they are more main-
tainable than functional or algebraic languages (23:ix). Representing informal models in a formal
object-based specification language provided a basis for the development of an automated trans-
formation method between the informal model and its equivalent, executable REFINE specification.
Requirements analysis is still performed using informal techniques, but as a final step, all docu-
ments and diagrams are mapped into the syntax of the object-based requirements language. The
object-based language sets the stage for automatic translation into the REFINE Language for be-
havioral analysis, and assists in clarifying any misconceptions generated by natural language or

misinterpretation of diagrams. Chapter II presents the results of our literature review.

A study was then conducted to analyze the information modeled by entity relationship, state
transition, and data flow models. The purpose of this analysis was to clearly identify information
contained in each model, and to determine how the information from all three models could be
represented in one unified model. This analysis resulted in the development of the Unified Abstract
Model (UAM). Chapter III details the analysis of the informal models and describes the compo-

nents comprising the UAM. The UAM, therefore, defined the components which the object-based

10

specification language had to be capable of representing. Once the UAM was defined, this enabled

us to more closely evaluate the specification languages discovered during the literature search.

Chapter IV presents a more extensive evaluation of the specification languages. The initial
literature search revealed two specification languages that appeared suitable for serving as our
object-based language. However, as discussed in Chapter IV, neither of these languages was com-
pletely suitable for supporting the UAM. As a result, we developed the Object Modeling Language
(OML) to fully support the UAM. OML has a formal syntax and is capable of modeling all infor-
mation contained in ERMs, STMs, and DFMs. The goals in developing OML, as well as its syntax
and semantics are fully described in Chapter IV. Because of OML’s formal syntax, informal models
represented in OML are now in a format which is amenable to automatic translation. That is, a
compiler can be written to transform an OML specification into another language. In our case,
we developed a compiler to translate an OML specification into a REFINE executable specification.
By taking the information contained in an informal model and modeling it in OML, an executable

specification can be derived to simulate the behavior of the informal model.

Chapter V focuses on the transformation of an OML specification into a REFINE executable
specification. This was accomplished by a two-step process. First, the OML specification was
translated intc a REFINE Abstract Syntax Tree (AST). This task was supported by developing a
compiler 1sing DIALECT, REFINE’s compiler generation tool. The second step required us to develop
translation software to convert the information contained in the AST into a REFINE executable
specification. Two example problems were then used to test the ability of OML and the translation

software to convert an informal specification into a formal, executable specification.

In addition to the main text of this thesis, we have provided several appendices. The syntax
and semantics of OML are presented in Appendix A, as well as the domain model and grammar to
support its translation into a REFINE AST. Appendix B provides the same type of information for

our Ada PDL. Appendix C contains all of the translation software required to convert information

11

contained in a REFINE AST into an executable specification. The next two appendices, Appendix D
and Appendix E, present two example problems that we implemented to test OML’s ability to model
an informal specification, to validate the translation software, and to test the correctness of the
informal specification through its execution. Finally, Appendix F is a user’s manual for using the

translation software to convert an OML specification into a REFINE specification.

12

Il. Literature Review

2.1 Introduction

The primary objectives of this literature search were:

1. to determine what characteristics a “good” object-based language should possess,
2. to select a specification language as a basis for an object language, and

3. to investigate current developments in transforming informal to formal specification tech-

niques.

There are many specification languages currently available to industry and academia, many
of which are tailored to specific domains. We have classified these languages into three broad
categories: object-based, algebraic, and miscellaneous. Most of the object-based languages have
some basis in first-order predicate logic and were most promising to this research. They model ideas
at high levels of abstraction allowing lower level details to be ignored. Many also include mechanisms
for supporting classification, inheritance, specialization, generalization, etc. that support object-

oriented development.

The algebraic group also has a basis in logic; however, they tend to be more functionally based
than the object-based languages. Concepts are built up in axiomatic detail from very fundamental
ideas, much as is done when developing an abstract data type. The high level of cffort required
to generate an abstract idea in this manner detracts from the clarity of such specifications. The

larger the problem description, the greater this problem becomes.

The final group has been generalized as miscellaneous languages. These languages are inter-
esting from the viewpoint that organizations have customized languages from the first two groups
to develop specific solutions to real problems. This is this group’s greatest weakness. Some lan-
guages reflect corporate views and ways of doing business. Others depict a specific development

technique that may not be broad enough to accomplish our objectives. Others are very much like

13

third generation programming languages, encouraging the analyst to depart from describing what

and to include details of how the problem should be solved.

2.2 Review of Specification Languages

A primary consideration in investigating specification languages was their ability to describe
system characteristics, and to provide a logical basis for manipulation of the specification. T. H. Tse
(27) and Fraser et. al. (13), note several desirable characteristics of requirements specification

languages:

1. As a bridge between the user and the development environment, the language must be easy

to employ and easy to understand by the naive user.

2. Because it serves to clarify natural language specifications, it should have a limited, well-
defined syntax and semantics to describe data and technical requirements in a precise and

unambiguous manner.
3. It must be suitable for both the task and the parties involved in communication. (13:455)

4. To clarify the conceptual representation of complex ideas, the language must provide a means
to separate the logical and physical characteristics the specification describes, and provide a

hierarchical framework to organize those characterizations.

5. The resulting specification must be modifiable and maintainable to accommodate the iterative

process of requirements specification.

6. It should provide a descriptive mechanism and operators for transforming the system descrip-

tion from one format to another to suit different development situations.

7. Ideally, a language must support completeness, correctness, and consistency checks and proofs.

(27:145)

14

Pamela Zave’s article also provides guidance for selecting a specification language. Impor-
tant issues that she emphasizes are the language’s ability to model functional and non-functional
requirements; the ability to support formal reasoning necessary for validation; the existence of a
well-defined set of steps to construct, validate, and implement specifications; and the language’s

cost effectiveness. (30:212-213)

Greenspan highlights several modeling ideas he believes are essential to requirements modeling

languages:

e The language must allow direct and natural modeling of the world. This is best accomplished
by using an object-oriented framework where ideas and entities of the world are described

using objects. Manipulation of these objects represents the behavior of the real world objects.

o It should support the organization of large descriptions. The principle of abstraction, in
particular aggregation, classification, and generalization, is the primary tool for accomplishing

this goal.

o It should allow the expression of assertions, entities, and activities. First-order logic is one

way of meeting this requirement.
e It should uniformly use basic principles to make it easy to learn and use.

e The language’s features should be precisely defined. That is, it should be formal. A formal
language is based on a mathematical formalism such as first-order logic. This is necessary for

the language to be well understood, well structured, and consistent. (15:3-4)

A language’s expressive power sets limits on one’s ability to express and reason about ideas.
A language’s syntax determines the ease with which a person can interpret information encoded in

the language and impacts the design of any tools that are built to support the language.

15

2.2.1 Object-Based Languages.

. RML. RML addresses most of the desired characteristics and capabilities of a requirements
language. RML combines knowledge-based representation concepts, object-oriented features
and capabilities similar to other requirements languages. RML is built on first-order predicate
logic. It has a well-defined grammar which simplifies translation from an informal to a formal
language. Abstraction principles for organizing objects include aggregation, classification, and
generalization. RML allows for three kinds of objects to represent real world concepts and
occurrences - entity, activity, and assertion. An entity object represents things in the world,
an activity object is the event that causes a change in the world, and an assertion object
reflects what is true in the world. An assertion object can also describe inputs, outputs,
controls, pre-conditions, post-conditions, invariants, and other properties. RML encourages
the abstraction of ideas and the use of domain modeling. Greenspan’s dissertation contains

a complete description of RML’s syntax and semantics. (15:11-26)

. VDM. The Vienna Development Method (VDM) is a systematic approach to large-scale soft-
ware system development pioneered by Vienna Laboratory. The method was first envisioned
for the development of computer languages and their processors. However, the technique has
since been applied to other systems. VDM uses decomposition and correctness arguments
to specify the architecture of software systems. Abstraction is used to manage complexity.
Refinements are used to transform an initial formal specification into objects that can be
implemented. The method uses a language called Meta-IV to document its specifications.
Meta-IV is based on first-order predicate calculus with equality (19). This provides the lan-
guage with consistent, complete axiomatic definition and a set of mathematical notions that
are widely understood. It includes representations for, and basic operations on, sets, maps,
and tuples. It also has facilities for named and unnamed functions. Class structures are easily

defined and language constructs support inheritance, although inheritance is not specifically

16

addressed in the syntax. Meta-IV contains most of the concepts that have been incorpo-
rated into Z (pronounced “zed”), a set-theory based language used to develop functional
descriptions of computer systems, and Reasoning Systems’ Software Refinery (25). Meta-IV
was designed to specify systems; it was never intended to be mechanized. (5) The REFINE

environment, however, implements the essential ideas of this language.

. REFINE. The REFINE Software Development Environment is composed of a user interface,
the REFINE language, and a set of software development tools. The REFINE language, or
simply REFINE, is a wide spectrum language that provides an integrated treatment of set
theory, logic, transformation rules, and pattern matching. REFINE provides much freedom to
express specifications at any desired level of abstraction. (22:1-2) The specification’s behavior
can be evaluated by executing it in the REFINE environment. The environment also contains
several valuable tools. DIALECT is a language processing tool that can be used to define
grammars and read files written in the new languages into REFINE’s object base. The Object
Browser is a menu-driven systern used to examine the static structure of the object base.
INTERVISTA allows the analyst to develop graphical interfaces to REFINE. With REFINE, an
analyst is also able to convert specifications from procedural structures to object-oriented
implementations with minor modifications. This capability also allows the user to transform
abstract specifications to more program-like specifications to enable transformation into target

code.

. Eiffel. Eiffel is an object-oriented programming language. It supports the ideas of class and
inheritance well and uses the idea of assertions to document correctness arguments such as
pre-conditions, post-conditions and invariants. (20:Appendices B-E) The language’s structure
is well suited for specification with respect to implicit descriptions of the domain, but the

language would need to be extended to include concepts dealing with sets and maps.

17

5. Spec. Spec was developed at the US Naval Postgraduate School to be used for large scale
development and to represent black-box specifications. Spec uses predicate logic to define
the behavior of a model independent of its internal structure. This structure is described
by modules, messages, events, and alarms. This language is different from the algebraic
languages in that it is built on conceptual models rather than theories and allows the user
to describe interfaces with exceptions, time dependencies, and state changes independent of
the target language. Modules respond when stimulated by a message. Actions are defined by
pre- and post-conditions and their associated concepts, which abstractly describe symbols in
the condition predicates and help decompose the specification into manageable chunks. Spec
syntax allows natural language and informal descriptions of concepts in addition to formal,
mathematically-based ones. Messages define all the inter-module communication in Spec
specifications. The receipt of a message is an event. Events describe the system’s behavior
and relate a module, a message, and a time. Alarms are discrete points in time when events are
triggered and describe a temporal schedule if one is required. Spec supports time-referenced
distributed systems. It also supports inheritance of concepts to ensure uniform treatment
across the model. (4) Spec appears to provide a high degree of descriptiveness and structure

as well as the concepts that underlie object-oriented analysis.

6. Object-Oriented Structured Design. OOSD is under development by Interactive Develop-
ment Environments. Its notation exists in both graphical and textual forms. It is based on
ideas from structure charts, Booch notation for Ada packages, class hierarchy, inheritance
principles, and Hoare’s monitors for concurrent programming. CASE support is being built
as an extension to the Software through Pictures environment. OOSD supports a variety of
design strategies. The only designs excluded are those with type or name conflicts, or with
unconnected structures. The notation supports language-independent architectural design.

Language-specific information contained in detailed designs must be represented as annota-

18

tions; there are no OOSD features to represent them. (28) Only detailed examples of the

graphical notation were available.

2.2.2 Algebraic and Miscellaneous Languages.

. PAISLey. PAISLey is an executable specification language best suited for specifying highly
concurrent, real time systems with timing constraints being the primary non-functional re-
quirements. It is based on the data flow methodology, and generates a built-in notion of
control from the calling and argument structure of the functions generated to represent DFM

processes. (30:214-216)

. Algorithm Description Language. ADL is an object-oriented language containing several
features from Smalltalk and C++ while supporting standard third generation language fea-
tures such as flow control, arrays, and string manipulation. ADL syntax is much like Pascal,
contains no facilities for predicate logic, and does not have any built in functions for sets,

maps, or sequences. (8)

. Larch. The Larch Project has developed a family of specification languages. Each speci-
fication is written using both the Larch interface language which is programming language
specific, and the Larch Shared Language which is common to all languages. These languages

are algebraic in nature and do not contain abstraction concepts. (16:24)

. Problem Statement Language. PSL was developed at the University of Michigan as part
of the ISDOS project. Its semantics and syntax are based on the entity-relation approach.
PSL supports multi-level refinement very well, allowing systems to be specified hierarchically.
(27:146) However, the notions of pre- and post-conditions are not supported. Actions to be
performed are specified by defining a series of steps or actions. We believe that some form of

pre- and post-condition behavior description is necessary for encouraging the user to describe

19

his behavior in terms of what must be accomplished as opposed to how it can be accomplished.

PSL’s approach to describing behavior does not discourage the user from describing how.

5. EDDA. EDDA is an attempt to add mathematical formalism to SADT. Because it is based
on SADT, it cannot easily represent any other design methodology. EDDA has two forms:
G-EDDA, the standard graphical version of SADT, and S-EDDA, a textual language that
partially represents the graphical constructs. (27:146) From the example shown in (27),

interface definitions can be expressed very clearly, but process descriptions are non-existent.

6. Systematic Activity Modelling Method. SAMM was developed by Boeing Computer Services
Company. Like SADT, SAMM is a highly graphical representation method. It provides little
support for low-level textual system specification. Documents generated by SAMM consist of
graphical data descriptions showing the flow of information between processes, and process
descriptions itemizing input, output, and activity requirement conditions. Specifications built

with it can be analyzed using tree and graph theory. (27:148-149)

7. Higher Order Software. HOS is an automated version of AXES marketed by Higher Order
Software Inc.. It supports a functional life-cycle model designed to support the entire de-
velopment process and generate a provably correct design. The language is formal and its

mathematical basis is thinly disguised from the user. (27:149)

8. Requirements Statement Language. RSL was developed by TRW Defense and Space Systems
Group. In its textual form, it expresses requirements in terms of elements, relationships,
attributes, and structures. RSL represents software by tracing the processing paths through
it. Although it supports hierarchical decomposition, only the most detailed consolidated view

appears in the final version of the documentation. (27:150)

Several other specification languages are also discussed in (14:Chapter 5). Because tiiey were not

directly applicable to this research, they have not been included here.

20

Languages

RML
VOM
REFINE
Eiffel
Spec
00SD
ADL
PAISley
Larch
PSL
EDDA
SAMM
HOS
RSL

Language .
Characteristics

Woell-defined syntax

Functional

Object-Oriented

Abstraction
Classification
Generalization
Aggregation

Inheritance

Descriptive

Modifiable

Verifiable

Understandable

Tool Support

. Supported
Limited Support

Figure 3. Comparison of Specification Languages

2.2.3 Summary of Language Assets Figure 3 contains a summary of common language
features. Many languages were found to be lacking at least one attribute critical to this research;

others were somewhat suited to this research’s objectives. These factors are discussed below.

2.2.3.1 Object-Based Languages. Several of the object-based languages were suitable.

o RML encourages the abstraction of ideas and the use of domain modeling. Greenspan’s
dissertation contains a complete description of RML’s syntax and semantics and it was a
leading candidate for our selection of an object language. RML’s main detracting feature was

the difficulty in learning its syntax.

21

e Meta-IV, VDM’s object language, contains constructs that represent a wide range of math-
ematical and logical ideas. It was an interesting option; however, its lack of mechanization

and explicit inheritance capabilities made Meta-IV a less than optimal choice.

o The REFINE environinent iinplements the essential ideas of Meta-IV. It also provides a wide
range of automated transformation and inspection capabilities. It was a candidate for our

object language.

e Eiffel’s syntax could be parsed by DIALECT into REFINE’s object base for execution and
manipulation; however, it lacks representations for sets and maps. These extensions would
need to be added in order to use existing tools to construct an automated environment. Purely

as a language, it could be made suitable.

Other object-based languages were not as useful:

® Spec appears to provide a high degree of descriptiveness and structure, and representations
for the concepts that underlie object-oriented analysis. The amount of informalism included
in Spec compounds the problem of translating informal representations into formal ones and

limited Spec’s applicability to this research.

e The textual version of OOSD doesn’t seem as rich as the graphical version. The notation
has many valuable ideas; however, it is centered more on design specification rather than on
requirement specification. This is a detracting feature in that it encourages the analyst to

focus more on details and less on abstract domain representations.

2.2.8.2 Algebraic and Miscellaneous Languages. None of the languages discussed in
this category were useful. The summaries below focus on what we considered to be major flaws

but are not comprehensive descriptions.

22

ADL contains no facilities for predicate logic and does not have any built-in functions for
sets, maps, or sequences. It cannot rapidly prototype the behavior of requirements without
]

implying design decisions.

PAISLey is based on data flow models, largely ignoring ERMs and STMs. It was insufficient

because we needed to model all three types of informal models.

The Larch family of specification languages is algebraic in nature and does not contain ab-

straction concepts.
PSL is based on an entity-relationship approach and is too limited and too specific to be used.

EDDA only supports the SADT methodology and is too limited in scope to be useful in our

research.

SAMM lacks the semantic richness of definition needed to specify systems in the manner we

intended.

The ideas that HOS uses to generate a correct design may have been usable, but its reliance on
sets of mathematical axioms and its focus on functional decomposition reduced its usefulness

here.

RSL does not support the object-oriented concepts we desired to incorporate into our speci-

fications.

2.2.3.8 Conclusion. The four object-based languages listed in Section 2.2.3.1 seemed

suitable as our object language and survived our initial cut. Of those languages however, REFINE

and RML seemed particularly useful. We still needed to consider two important factors before

making our final language choice. First, we had to consider the nature of the information that

we needed to model with the language. Each analysis model (STM, DFM, and ERM) had to

be examined to determine what information each model is capable of describing. The informal

models also had to be considered as a group to determine if there was any overlap, redundancy,

23

or interdependence in the three representations. The second factor we had to consider was how
the information needed to be captured in the object language. The representation must encourage
the user to specify his system in an object-oriented and loosely coupled manner while facilitating
an automated translation technique that is simple and direct. These issues and other important
considerations are addressed in Chapter III. Another objective of our literature search was to locate
current research on translating informal specifications into formal specifications. The next section

discusses several groups’ efforts to perform this translation.

2.8 Transforming Informal Languages to Formal Languages

Frequently, formal and informal specifications are viewed as competing techniques where only
one method or the other can be used to develop a system. However, completely divorcing informal
modeling languages from formal languages does not take advantage of the unique benefits offered
by each class of languages (13:456). One goal of this research was to represent the information
contained in informal modeling techniques in an object-based formal specification language. Doing
so can bridge the gap between people’s mental understanding and the formal semantics. Several

groups have made progress towards bridging the gap.

2.3.1 Structured Analysis to Vienna Development Method. Fraser, Kumar, and Vaishnavi
offer motivations for bridging the gap between informal and formal specifications and two meth-
ods for transforming an informal specification into a formal specification. The authors selected
a payroll system to illustrate this transformation and used Yourdon’s Structured Analysis (SA)
technique and the Vienna Development Method (VDM) as the informal and formal languages, re-
spectively. These languages were chosen because they represent their respective classes, they are
widely accepted in academia and industry, and they have extensive methodology support infras-
tructures (commonly accepted standard and notations, verification mechanisms, etc.). The first

transformation method presented was a cognitive approach that uses SA modeling techniques to

24

guide the analyst’s understanding of the system and to assist in developing the VDM specification.

The second method was a rule-based approach for generating VDM specifications. (13:456-458)

The transformation method requires the problem to be informally modeled using Data Flow
Diagrams (DFD). The lowest level DFD functions (functional primitives) are then described us-
ing transform descriptions represented as Decision Tables. The technique for developing VDM

specifications from SA decomposition consists of a three step process:

1. Representing data flows in the data dictionary, and representing inputs from and outputs to

external entities in an abstract syntax,
2. Producing a specification for each transform in the DFD,

3. Using VDM combination constructs to combine the specifications according to the architec-

ture provided by the leveled DFD. (13:457)

The second approach is a rule-based method for interactively generating VDM specs. This ap-
proach cannot be completely automated, however, since control flows and control processes in DFDs
and STDs are not required to conform to structured analysis sequencing and iteration constructs
and must be manually restructured. Therefore, whenever a control flow or process is encountered
the analyst must restructure them to conform to structured constructs. The automated conversion
is based on three VDM conversion and composition rules. The first step consists of mapping decision
table descriptions into VDM specifications using VDM’s decision table conversion rule. Following
this conversion, the specifications are then composed in a bottom up fashion using VDM’s sequence

composition rule and also its while process composition rule. (13:458-462)

Toetenal, Katwijk, and Plat have performed a similar transformation between SA and VDM.
The authors provided a table describing a mapping from DFD constructs to VDM equivalents.
A potential problem noted, however, was for most constructs there may exist more than one
VDM equivalent. The authors also added the capability to modify the VDM specification in two

different, but related, ways depending on the intended use of the specification. The first form

25

of modification is named OOFs!, and is a design method based on an object-oriented paradigm.
OOFs selects components from the initial VDM specification and iteratively refines these objects
into an object-oriented VDM specification that can be simply implemented into a final product.
A second modification method, termed SOFQOs?, transforms the initial VDM specification into a
“stream-oriented” VDM specification. The SOFOs approach is a three step process which leads to
an executable prototype. Therefore, depending on the developer’s intentions for using the VDM
specification, either OOFs or SOFOs methodologies can be applied. (26:121-126) At the time of

publication, neither of these methodologies were automated.

2.8.2 SADT to RML. Greenspan also has described a method for translating an informal
language into a formal language. Greenspan developed the formal language RML, and established
a manual mapping of SADT constructs to RML. The transformation is accomplished by creating
a generic object in RML for each concept defined in SADT and then specifically defining those
objects in RML. RML captures the SADT structures in an object-oriented format and it uses

powerful assertions to specify intended behavior and structure completely. (15:53-79a)

Each RML requirement model consists of several concept models where each SADT decom-
position represents a concept model in RML. Further details for capturing the contents of SADT in
RML are also addressed. Greenspan also conducted a thorough analysis of SADT to learn what in-
formation and concepts SADT contains and how to represent this information in RML. (15:53-79a)

Greenspan’s transformation methodology was not automated either.

2.3.8 SADT to REFINE. A recent thesis effort by Douglass at the Air Force Institute of
Technology has resulted in the development of a methodology for translating SADT information into
a formal specification language, REFINE. The overall goal of Douglass’ thesis was to automate the

creation of an executable specification. After evaluating the SADT language, Douglass determined

! expansion of acronym not provided by source
2expansion of acronym not provided by source

26

that the existing SADT model did not contain enough detailed behavior information to enable its
translation into an executable formal specification. That is, the existing SADT model does not
contain any information to indicate what inputs result in what outputs or what pre-conditions
result in corresponding post-conditions. To resolve this deficiency, Douglass extended the SADT
model by adding decision tables for each leaf node activity to capture the relationship between the
state or value of all inputs and controls, and the corresponding state or value of all the outputs.

(10:23-25) With this extension defined, he developed the following translation technique:

1. Define a subset of both SADT and REFINE languages.

2. Develop a Common Representation to which SADT and REFINE can easily map.

3. Map the language constructs.

(a) Convert SADT to an SADT subset with decision tables.
(b) Convert SADT subset to Common Representation.

(c) Convert Common Representation to REFINE subset.

(d) Convert REFINE subset to REFINE executable. (10:25-31)

Table 2 shows how the language subsets were mapped to each other.

Language Subsets
SADT Common Representation REFINE
Activities Functions Function
Inputs & Controls Pre-Condition Variable Declaration
Outputs Post-Condition Variable Declaration
Decision Table Transform Transform/Rule

Table 2. SADT to REFINE Language Mappings

Because the Common Representation to REFINE translation is so straightforward, no further

conversion was necessary to obtain an executable REFINE program. The translation of decis.on

27

tables into REFINE was also simple. Each row of a decision table corresponds directly to one

transform statement and all rows of each table must be mutually exclusive.

Douglass noted several benefits of this transformation technique. First, simulating the system
behavior enabled him to very quickly correct deficiencies in his specifications and produce highly
accurate specifications. Secondly, if his translation technique were automated, then only simple
changes to the decision table are needed to automatically generate modified REFINE code. This
is beneficial for generating “What if?” scenarios. Additionally, the REFINE source code can serve
as the basis for design and implementation phases. Lastly, this enables any future changes to

requirements to be handled by modifying specifications rather than source code. (10:41-43)

2.4 Conclusion.

This chapter has researched current literature to:

o determine what characteristics a “good” object-based specification language should possess,
o select a specification language as a basis for our object-based language,
e discover informal to formal specification translation techniques.

Figure 3 summarized the capabilities of several specification languages in terms of desirable
object-based language characteristics. Several useful object languages for this thesis were identified.
Chapter III provides further requirements analysis of ‘1e detailed description of data necessary
for representing informal modeling techniques. This analysis clarifies which specification language
format is best suited for our research. Based on our literature search, the most attractive candidates

were:

e REFINE - highly descriptive and compatible with target environment, and

o RML - very descriptive and fewer degrees of freedom than REFINE.

28

Additionally, two informal to formal translation techniques of particular interest to us were
introduced. The first technique translated Structured Analysis (Data Flow Diagrams) specifications
into VDM specifications. This translation was beneficial for several reasons. First, the translation
presented an example of a way to map informal information (both static and dynamic) into a
formal specification. Second, DFDs, one of the three main models we will translate, were used in

this translation process. Third, VDM is similar in many aspects to our target language, REFINE.

The four translation techniques described in Section 2.3 provided a significant amount of
insight for us while we were developing our translation methodology. Unfortunately, none of these
translation techniques (to our knowledge) have been successfully automated, and none have de-
veloped a unified mode] for representing the information contained in ERMs, DFMs, and STMs.
The next three chapters describe in detail the approach and implementation of our automated

translation.

Chapter III defines a unified representation necessary for translating several informal modeling

techniques (ERMs, DFMs, STMs) into a formal specification.

29

III. Requirements Analysis
3.1 Introduction

Software problems can be analyzed in many different ways. Three commonly used analysis
tools are Entity Relationship Models (ERM), Data Flow Models (DFM), and State Transition
Models (STM). These tools help define the system requirements, and form a basis for developing
test cases to evaluate the system. This chapter analyzes these systems analysis models to determine
the information represented by each modeling technique. The purpose of this analysis was to
clearly identify information contained in each model, and determine any areas in which overlapping

information is represented.

Each model can be considered as a group of data items or essential objects that describe a
problem. By combining the essential objects of each model into a single model, a unified object-
based model can be derived which is capable of representing the information and behavior captured
by each informal model. We must also develop a methodology to express the objects defined by
the unified object model in a way that can be computer-manipulated. In this case, we need a
syntax defining a textual language, and a set of rules for converting an informal model into a
textual (compilable) specification to express the content of an informal model in terms of the
unified object model. The resulting object modeling language serves as a basis for describing
an intermediate representation which simplifies automated translation from an informal analysis
model into the REFINE object base. Once in the REFINE object base, the model can be exercised
to demonstrate how the informally described system would behave. Execution of the specification
provides a convenient means to compare the newly-generated, formal specification against the

intended behavior described in the informal analysis models.

The goal of our research was to transform the information contained in informal analysis

models into an executable formal specification that can be used to verify anticipated system behavior

30

and serve as a basis for formal software derivation. The following strategy was established to achieve

this goal:

1. Analyze various informal requirement specification models (ERMs, STMs, DFMs)

2. Develop a Unified Abstract Model (UAM) capable of modeling information contained in the

three informal models

3. Define an Object Modeling Language (OML) that represents the UAM in a formal, textual

format.
4. Translate the OML into a REFINE Abstract Syntax Tree (AST)

5. Manipulate the AST to simulate behavior of the specification and/or develop REFINE source

code.

This approach is graphically represented in Figure 4. This chapter addresses the first two steps of
this process. The first part of this chapter details the data items necessary for modeling DFMs,
ERMs, and STMs. These models were chosen because of their wide use in the software community to
specify software requirements. Analyzing these models was necessary to accurately and completely
understand all information, both static and dynamic, that each model is capable of describing.
DFMs primarily illustrate the functions that a system must perform; ERMs represent the objects
and stored data in a system, and the relationship between these objects and data stores; and STMs
model the event-dependent behavior of a system (29:68-70). Each model is described in terms of
the standard data items it contains. Later, these elements are represented in an object-oriented
architecture required by the Unified Abstract Model and represented in its textual form, Object
Modeling Language. That is, each model is described in terms of objects (essential elements),
associated attributes (descriptive factors about the essential elements), and relationships between
objects. This approach was selected since software designed in this manner is usually very loosely

coupled and can be easily modified or expanded to include other model types.

31

.- ERM DFM @

Encode

Object
Modeling
Language

Parse
File v

Modity/ Dialect ' Modity/
Maintain Maintain

R —

Build Abstract
Syntax Tree

Refine
Object
Base

Semantic

Simulated AST Refine
Executed Source
Behavior Code

Figure 4. Informal Model to REFINE translation process

The second part of this chapter describes a Unified Abstract Model (UAM) that is capable
of representing all three informal models. The intent of the UAM is to be highly general, yet
robust enough to fully represent any informal analysis model or combination of models without
duplication of elements. Thus, the UAM must be capable of modeling all specified data and
preserving all intended behavior without adding any additional behavior. The UAM serves as
the framework for defining the elements required in the Object Modeling Language (OML) (an

intermediate representation) which is described in Chapter IV.

32

3.2 Evaluation of Informal Models

This section focuses on three popular informal analysis models: ERMs, DFMs, and STMs.
Each of these models specializes in describing a specific aspect of a system while neglecting complete
descriptions of the other aspects. ERMs model all the data contained in a system and provide
information on how the data are interrelated. DFMs emphasize the functional processes a system
must perform and describe the transformation of input data into output data. STMs describe the
event-driven relationships in a system. (29:68-71) This section describes in detail the elements
comprising each model and how the models overlap. The next section describes how they are
represented in the Unified Abstract Model. The purpose of this analysis was to construct a set of
elements that fully describe all aspects of a system. From this set, a minimal subset can be selected

to create a unified abstract model.

3.2.1 Data Flow Model Analysis Data Flow Models are typically constructed using a top-
down decomposition approach. Beginning with the initial system description, the specification is
functionally decomposed into processes, data stores, and terminators which are linked together with
data flows. Each process is abstracted to the desired level of detail until the specification provides
a suitable level of understanding for both the user and the developer. A DFM may also contain

control process and control flow information to model behavior present in real-time systems.

® Processes. Processes represent the transformation of data or the actions performed on data
in a system. A process can be described by the data it uses (an input flow), the data it
produces (an output flow), and the activity of the process. The input and output flows may
be as large or as complex as necessary to satisfy the process behavior; however, they should
be appropriate for the level of abstraction of the model. The number of behaviors needed
to describe the activity of a process also depends on the desired level of abstraction. DFMs

provide an excellent overview of the important functional components of a system but do not

33

provide any textual details on the transformation of the data. These are contained in the

process specifications that accompany the models (29:68).

Flows. Data flows are another major component of DFMs and they can be described as data

in motion (29:143). They represent the information passed from

— one process to another process, store, or terminator,
— from a store to a process or terminator, or
— from a terminator to a process or store.

A flow can be fully characterized by the data it carries, and by its source and destination
endpoints (the process, store, or terminator that produced it and the process, store, or termi-
nator that consumes it). It can be thought of as an association between two entities, although

it is not necessarily a complete interface description and may not exist at all points in time.

Control Processes. Control processes are part of an extension to DFMs to model the timing
aspects of real-time systems. These processes act as coordinating devices that activate other
processes in the DFM by sending and receiving control flows. Because of their supervisory

nature, there is typically only one control process per level of abstraction in a DFM. (29:173)

Control Flows. Control flows are similar to data flows; however, the information they contain
is not a value. It is a flag or an indicator for a process to execute. Control flows are a way
for a control process to activate a transformational process. Upon completion of the process,
another control flow may be returned to the control process to notify it that the process it

activated has completed. (29:172)

Stores. Stores represent collections of data. Data are described by a collection of attributes:
the simplest descriptions of information that can be represented in a system. Attributes
are the link between the real world object and its software counterpart; that is, the target

computer’s representation of integers, real numbers, characters, and strings. These atomic

34

definitions can be grouped into higher level data items, which in turn can be grouped into

sets or sequences to represent information stores. (29:149)

o Terminators. Terminators are entities of the outside world that interface with the system but
cannot be changed by the system. They are important because they model the environment

in which the system resides. (29:155)

e Data Dictionary. The data dictionary functions as a glossary of terms. It contains a listing
of all the objects or data elements with which the system works. All composite items are

expanded to show the data content and interrelationships. (29:188)

3.2.2 [Entily Relationship Model Analysis Entity relationship models characterize the infor-
mation in a system as a group of objects that are related to each other by associations or relation-
ships. From a functional decomposition point of view, ERMs graphically depict the relationship

between data stores shown in process diagrams (23:267).

e Entities. [Entities are sets or collections of objects or concepts that exist in the real world
and are of interest to the system. Each member of the collection can be uniquely identified by
the value(s) of its attributes. Attributes or data elements contain information that describes
all aspects of the object that are important to the system. Entities correspond to the stores

component of DFMs. (23:271)

e Relationships. Relationships describe the static association between entities. They char-
acterize important information about the way entities interact that cannot be derived from
other information stored in the system. Information that must be maintained about the re-
lationship between two entities, known as link attributes, are commonly represented by data
elements (attributes) associated with a relationship. (23:32) Relationships can describe three

kinds of associations: A super-type/subtype or generalization relationship, sometimes called

35

an “is a” relationship; an aggregation relationship, which we refer to as an “ico” (is composed

of) relationship; and a general relationship.

e Attributes. An attribute is a single characteristic that describes a specific aspect of an object.
An object can have multiple attributes that should capture all information important to that

object. Also, all attributes should be independent of one another. (24:26)

3.2.3 State Transition Model Analysis State transition models document the dynamic char-
acteristics of the system model in terms of states and events. Events document stimuli from outside
the system, or from one state in the system to another. The response of an object to an event
depends on the current state of the object. An activity is the response the object takes when an
event is detected that causes a change in state. Rumbaugh differentiates between two types of
state behavior: activities and actions (23:101). Activities have duration and are associated with
the behavior of a specific state. They execute until they complete their function, or are interrupted
by an event which causes a transition to another state. Actions are a type of behavior associated
with events that occur when entering or exiting a state. Actions occur instantaneously or in so

short a time that they appear to occur instantaneously.

e States. States are defined by the range of values that certain object attributes or groups
of objects can possess at a particular time (i.e. its state space). Therefore, state represents
a stage, or period of time, in the lifecycle of a system. A state is also an abstraction of an
observable system activity that is waiting for some event to occur. A state has a duration
and is associated with a time interval during which the system is performing some activity.

(29:260-263)

o FEvents. Events are some condition or set of conditions that the system can detect. Events
are considered to have no duration and can be thought of as signals that are transmitted from

one object to another. Rumbaugh describes them as “all signals, inputs, decisions, interrupts,

36

transitions, and actions to or from users or external devices (23:173).” Rumbaugh allows the

association of an action (behavior) with an event.

o Activities and Actions. Activities and actions capture the behavior of a system. Actions are
considered to occur instantaneously, while activities have duration. STMs typically refer to
several types of behaviors: entry actions, exit actions, sequences of (control) behaviors, and
“do” activities. Entry and exit actions are performed on objects as a result of a change from
the current state to the next. Entry actions are most commonly implemented; however, exit
actions may also be needed to handle error conditions or other required actions when an event
interrupts the “do” activity of a state. Sequences of behaviors represent control sequences,
that is, the generation of events that cause changes in other objects (and changes in system
state). Finally, “do” activities are equivalent to processes in the DFM. These behaviors can
be expressed by Program Design Language, Decision Tables, or Pre- and Post-Conditions.

(23:92-101)

Now that the essential elements of each informal analysis model have been identified, the next
step is to combine all of these elements into a single, unified model. The next sections describes

our rationale and how we have composed these model elements into a unified abstract model.

3.3 UAM Architecture Development Rationale

We began our research by focusing on object-oriented languages. It became very natural
for us to consider the informal models as collections of self-contained elements. Each essential
element represented a component of an STM, ERM, or DFM and was evaluated to determine what
attributes (or facts) were necessary for it to be fully described. To us “fully described” meant
that enough information was contained in a description so that an automaton with no inferencing
ability could build a useful executable specification component out of it without using any other

information.

37

After each element was evaluated, we began looking for general similarities among the essential
elements. Some informal model elements represented connections between other informal model
element types. These connector elements had no definition other than to describe how two or
more elements were interrelated. These elements formed our Association superclass. All other
elements were grouped into the Object superclass. After making this first division, we began a
detailed comparison of all the elements that we had assigned to each superclass. In the Object
superclass there were several elements that represented passive objects (entities, terminals, and
data dictionary entries). Because these elements were so similar, we combined them into one class
(Entities) and provided that class enough attributes to fully describe any of the elements included
in it. The same line of reasoning was used to combine control processes and states into one object
class (States) and control flows and events into one association class (Events). Finally, we noted
that several Object classes contained a behavior or action. We felt that behavior could be specified
more clearly if it was described separately. The process, state, or event with which the behavior
is associated only defines when the behavior will occur as the specified system executes, therefore

behaviors, states, events, and processes can be described separately.

3.4 Unified Abstract Model

The analysis of the DFMs, ERMs, and STMs resulted in the identification of an essential
set of elements needed to completely represent each of the informal analysis models. This section
combines these elements in a manner that interrelates the various models and eliminates unnecessary
duplications. The word object is used quite often in the following sections and can have different
meanings. Therefore, when speaking of the superclass, Object is capitalized. Any general use of the
word object is in lower case. Table 3 summarizes the set of elements necessary to represent each
model. The entries across the top are objects that exist in the Unified Abstract Model (UAM).
Entries along the left column indicate the elements typically associated with each of the three

analysis models. An “X” in the table indicates how each informal analysis element is represented

38

UAM Object Type

Model Object Association

Process State Store Entity Behavior Event Flow Relationship

DFM
Process X

Process Specification X
Store X

Control Process X
Control Flow X

Data Flow X X
Terminator X

Data Dictionary X X

ERM
Entity X X

Attribute X
Relationship X

STM
States X

Actions X

Activities X

Events X

Table 3. Mapping Informal Model Elements To Unified Abstract Model Elements

in the UAM. For example, the activities associated with a STM are represented as behavior objects
in the UAM. Initially, the UAM modeled all its Object types in one group. However, the elements
are better conceptualized in two Object categories: Objects and Associations. Objects represent
data, conditions, or activities (things represented by terminals of some sort in the informal models).
Associations represent some form of relationship between two objects (things represented by arcs
or links in the informal model). Association object types describe how one or more Objects are
related to each other. Relationships (from ERMs) associate entities with each other, events (from
STMs) associate a state with its successor, and flows (from DFMs) associate the producing and
consuming processes. These three objects, therefore were grouped into the Association superclass.

The remaining objects (processes, states, stores, entities, and behaviors) were grouped into an

39

Object superclass. Association objects, therefore, represent a relationship between two or more

elements from the Object superclass.

Many of the mappings between the informal model elements and the UAM objects are
straightforward. However, some of the mappings require explanation. DFM control information ac-
tually represents information about the state of a system and the sequencing of events which cause
state transiticis {23:129). Therefore, the UAM models all process control information contained
in control processes as state behavior objects, and all control flows as event objects (an association
between two states). All data in a DFM is considered tc be a single entity or a group of entities
(a store). Therefore, a data flow is a combination of a flow association (between processes and/or
stores) and an entity (the data associated with the flow). Processes are described by their input and
output data flows and contain a behavior that models the process’s activity. Therefore, a process
in the informal model maps to a process object, a behavior object, and flow objects (representing

in-flowing data and out-flowing data) in the UAM .

Primarily, the UAM serves as a template consisting of object class definitions. The only
exception to this is the Entity class. Entities are used to describe many types of data that must be
specifically tailored to their application. Entities are also used to describe categories of information,
such as the generalized types of items that can be contained in data stores. Becausc they define
characteristics of a group, it was more natural to allow class definitions of entities as well as instance

definitions of entities.

To further define the nature of the Unified Abstract Model (UAM), the relationships between
these classes needed to be defined. These relationships are graphically depicted in Figure 5. A class
hierarchy was a very natural modeling method to use for this description. It shows the structure
of the UAM by showing relevant objects, their attributes, and the relationships between various
objects that were once parts of the three informal models. (23:21) For our purposes, decomposing

the informal models into their essential elements and re-composing them into a hierarchy helped

40

uopuOD elqeL
seinquIY [eguesejel,, 180d/01d uotsioeq 1ad

loquiAg pue ‘Buuig ‘ueejoog ‘feey ‘seBeju|
Joj sedA} eagiwud s,euyey Buisn pejepop,

Vs
“SeINqUIY
Jomeyeg
00.d-Aug
0014-0101S
s ” (1d0) J6ps0
II%(L2 e 1 .E >
010)S-001d (1d0) oud Aueuipsn eordg-elBlS wAuasoy Aﬁ%ovﬁww Sonauily
oo, | wenanuew | INGovsIOD #WOAZUXT || »SMOILHNO begpes | | wengwew
weg-moyy | S0ALwen3 odhL| | ..ueazyEis » SO INEN sd1-fanu3
ol WoAs duysuogeley | oS §3600.d IS A3
vsi
Vs
«190k0-01
«108lqO-Ui0s
.uooEO.oEcu ewBN
pros———" welao
_ VS
Tmo_no siskjpuy
(%]
SIepoN sisAjeuy
fBuLOpu|
SW3a

SIS

Figure 5. Unified Abstract Model
41

refine our understanding of the analysis objects and develop a more abstract model that was used as

a basis for the Object Modeling Language (OML). Figure 5 is an ERD showing the decomposition

of the analysis objects contained in informal models. Each group is discussed below:

3.4.1 Objects An Object is defined as a “concept, abstraction, or thing with crisp boundaries
and meaning for the problem at hand (23:21).” It serves to promote the understanding of a
problem and provide a basis for computer implementation. Therefore, all concrete or conceptual
things are grouped into the Object class of the formal model. The Name attribute is a unique
identifier associated with each object instantiation and is the only inherited attribute for all Object

subclasses. Each subclass of Object as shown in Figure 5 is defined below:

e State. A state object represents the set of conditions (attribute values and relationships)
characterizing the state of a system during a given period of time. A state is defined by the
activity which is occurring at that time, and the set of events which cause a transition into
and out of that state. Therefore, each state object is composed of attributes representing
start events (which cause a transition into that state), exit events (which cause a transition
out of that state), state-space (a collection of objects and the ranges of values of the objects’
attributes that characterize the state), and an activity (the state’s behavior). The behavior
describes control activities that occur in the state, data transformation processes that occur in
the state, and boundary conditions that generate events. The State-Space attribute explicitly

defines which objects and attribute values constitute the state space.

e Entity. An entity object is defined by its attributes. Attributes are analogous to fields in
a record. They allow the specifier to tailor entities to the data that needs to be specified.
The Entity-Type attribute is used to specify whether the entity is internal or external to the
system. To further define the entity subtypes, each subtype also possesses its own unique
attributes which can be defined by the specifier. Details of how these attributes are defined

are discussed in Chapter IV.

42

e Store. Store objects represent collections of data elements in a system. The Nature attribute

of the store defines whether the ordering of the data is significant (a sequence) or not (a set).
The Key attribute defines the entity Name attribute of an entity class that an ordered store
is sorted on. The Order attribute is used in connection with the Key attribute and selects an
ascending or descending order. These two attributes are used when a store is defined as being
sequence-natured. The Content attribute is an entity class. The store consists of instances

of this class.

Process. A process object represents the functional operation of a system which transforms
data. A process is characterized by its In-Flows attribute (a set of incoming flow objects),
its Out-Flows (a set of outgoing flow objects), and its Activity (the behavior that transforms

data in the process) attribute.

Behavior. Behavior objects were added to the UAM to capture the dynamic and func-
tional behavior of a system in a manner which is suitable for an automated translation from
a specification language to an executable form. This representation must provide sufficient
detail to build functioning modules that can be composed into an executable representation.
The UAM provides three different mechanisms for describing the dynamic behavior of a sys-
tem: Program Design Language (PDL), Decision Tables (DT), and Pre- and Post-Conditions
(PPC). A subset of the Ada language defined in Appendix B is used as the PDL baseline.
Any PDL with a formal notation can be used as the PDL standard. A formal notation is re-
quired, though, to enable an automated translation into an executable REFINE specification.
Behaviors describe the actions performed by processes and the activities performed by states.
Rumbaugh’s STM distinguishes entry and exit actions associated with state transitions from

the continuous behavior of the state.

3.4.2 Associations. Associations represent connections between objects. They are described

by a unique Name, and the objects that they associate. An association can be either bidirectional

43

or unidirectional. Relationship Objects show a bidirectional association between two Objects.
An Event Object is a unidirectional association of two State Objects. Flow Objects are also
unidirectional. The Name attribute serves as a unique identifier to distinguish Association Objects.
The From-Object and To-Object attributes indicate which objects are related to each other. If a
unary association is desired, then the objects are only related in the direction of the From-Object
to the To-Object. If a binary association is required for a Flow Object, then two associations must
be instantiated: one for each direction of association. In addition to these common attributes, the

relationship, event, and flow associations have their own unique attributes:

e Events. An event association shows the relationship between two states of a system. The
event is theoretically considered to be an instantaneous occurrence which causes a transition
from one state into another. Certainly, any real action must take some amount of time; how-
ever, an event is the triggering condition which causes a state transition and is conveniently
modeled as an instantaneous action. Control flows, which are usually modeled in DFMs, are
modeled as events in the UAM. Control flows indicate the arrival of a specific condition or of
a boolean value to a process object. Control flows do not represefxt. data to be manipulated
but rather information regarding an event which causes an activity. Therefore, a control flow
can appropriately be modeled by an event object. (23:129) Event associations also require an
Event-Type attribute which indicates whether the event occurs from an internal or external
source. Events also have an optional Priority attribute which indicates precedence among
simultaneously occurring events. The optional Action attribute is a behavior that occurs
each time the event occurs. This feature has been included to keep the UAM consistent
with Rumbaugh’s (23) methodology. Although the capability to express actions exists in the
UAM, this feature is not be used in our examples. All behavior is typically captured within

the activities of a State Object.

44

e Flows. Flow associations indicate the movement of data into or out of a process object. A
flow association therefore must provide a Data attribute and a Flow-Link attribute to capture
this information. The Data attribute references an entity object which specifies the data
elements that are in motion. The Flow-Link attribute indicates the types of the two related
objects. Flow-Links are only valid between certain combinations of objects. Legal links can
be formed between the following object pairs: Process-Process, Process-Store, Process-Entity,

Store-Process, and Entity-Process.

o Relationships. Three relationship Types have been defined: Is Composed Of (ICO), Is A
(ISA), and General Association (GEN). The first two types group low-level objects into larger
objects and represent inherited characteristics. The third represents any other association
between two objects. General Associations are typically used when describing ERMs. This
appears to be the smallest set of relationship types required. Ternary relationships may be
modeled by multiple general associations. Link attributes are a special case that can also be
represented in terms of multiple binary relationships. The Cardinality attribute indicates the
multiplicity of the related objects. Cardinality can be represented as a one to one (1-1), one

to many (1-m), many to one (m-1), or a many to many (m-m) relationship.

The architecture of Figure 5 is conceptually descriptive, but many Objects contain attributes
that reference other Objects. These are called referential attributes and they form an undesirable
coupling between objects (23:27). This coupling makes a specification based on this architecture
difficult to modify while maintaining its consistency. To eliminate this problem, the cross-references
can be extracted out and recorded in a relation table with no loss in the clarity of the description.
The resulting architecture is shown in Figure 6. The relation-table documents all the relationships
between the other object instances contained in the UAM. It is a set of tuples that connect together
two object instances and the association instance that relates them. The referential attributes were

removed to a table for the following reasons:

45

100lqo-0L
199[q0-0088Y
welgo-woid

UoNIpUD iqeL
loquAS pue ‘Bug ‘uealoog ‘feay ‘1aBaju| 10d/R1d uoisaQ ad
10} sadA) aaquuid s,auyay Butsn pappop,
vS!
«Sainquiy
Joieyag
s014-Anu3
2014-2101S
Au3-o0id (do) Jepi0
aoigo0id || (do)hwoud || Ayewpren (ido) Aay
%0id-20ld || wex3aaueW| | |NgNSKODI 20vdg-9mIS juduon senqmy
r-moy odf}-ueng adk) bagnes wepaALeN|
B1eQ-MOl4 aneN odi 1 -3
Mol4 weA3 diysuonerey oIS $58001d aloig 3
Vsl
Vs
aweN
aweN
uoyeto0ssy w30

qe, uoflery

Figure 6. Unified Abstract Model (With Referential Attributes Removed)

46

. The UAM works with instantiations of the class types. In the case of many-to-many relation-
ships, this can lead to two problems. The first is modification. If an object is modified and the
many-to-many relationship changes, instances of other objects must be searched until all ref-
erences to the changed object are found. If the relationship is maintained in a relation-table,
the search becomes more straightforward. Second, our goal is to keep the process that we
are developing platform independent. While REFINE has a means to handle many-to-many

relationships, not all commercially available data base languages do.

. The attributes of an object should be values, not other objects. This disguises the fact that
the association is dependent on both objects and that it is not a part of either object by itself

(23:24,27).

. Referential attributes disguise the association as part of an object, when in fact, the associ-
ation is dependent on both objects together. In many programming applications, referential
attributes are represented by pairs of pointers that act as a bidirectional link. Even this is in-
sufficient for specification because it hides the fact that the forward and reverse relationships

are dependent on each other. (23:27)

. Removing the referential attributes decouples the objects and forces the specifier to think in
terms of what objects the system contains and how they are associated. As a result, objects

are more self-contained, and associations are explicit.

. Multiple cross-references make updating a specification and maintaining its consistency very
difficult. The original architecture is conceptually very appealing. Representing models in
this form is easy to understand, but creates a specification that has many cross-references.
Specifications are judged by several criteria, one of which is maintainability (3:58). The
revised architecture is slightly more difficult to understand, but yields a specification that
has very low coupling and can be easily maintained. Should a specifier find this architecture

difficult, it would be easy to initially model the system in the previous (highly coupled) form

47

and extract the revised architecture from this model. To do the reverse would not be as

simple.

For these reasons, we selected the architecture of Figure 6 as the basis for the remainder of our

work.

3.5 Summary

The architecture for the Unified Abstract Model has now been defined. Figure 6 provides the

formal graphical notation for representing classes, objects, and associations in the UAM.

With this analysis and modeling accomplished, an intermediate language representation, or
Object Modeling Language (OML), can be defined to facilitate the automated translation process
to convert an informal specification into a REFINE Abstract Syntax Tree (AST). Chapter IV defines
the syntax and requirements of the OML and describes the process for transforming an informal
specification into an OML specification that can be compiled using REFINE. Chapter V presents
our method for utilizing REFINE’s AST. The first approach defines a computational process to
traverse the AST and produce REFINE source code which can be compiled and executed to show
system behavior. The second approach simulates the behavior of the specification by traversing the
AST and executing objects in the tree based on the object’s structure. Each of these methods for
utilizing the information in REFINE’s AST provides unique benefits to the software development

process.

48

IV. The Object Modeling Language
4.1 Background

The Object Modeling Language (OML) described in this chapter defines an intermediate
representation for bridging the gap between informal software specifications and equivalent exe-
cutable formal specifications. Albrecht et. al., at the University of California at Berkeley, describe
a method for translating one high level programming language into another. They state that an
intermediate language provides a common representation to which the source and target languages
can easily map. The common representation should enable the mapping to be simple, repeatable,
and behavior-preserving (1:183); we developed OML to meet these requirements. OML is uniquely

qualified to formalize informal specifications for the following reasons:

1. It provides a unified representation to which Data Flow, Entity Relationship, and State

Transition Models can easily map.

2. It was designed to facilitate the automated translation of the above-mentioned analysis models

into REFINE executable specifications.

Figure 7 depicts the importance of OML for the translation of informal specifications into formal
specifications. Essentially, it serves to “bridge the gap” between informal and formal specifications.

The OML, an intermediate representation, was beneficial to our research for several other reasons.

o It formalized the translation process of a source language into a target language so that the

process is consistent and correct, and not affected by the skill of a specifier/analyst.

A canonical representation facilitates an automated generation and optimization process.

Without an intermediate representation, a unique translation mapping would have to be

created for every unique problem.

It forced a critical analysis of the modeling process. In order to design an intermediate

representation language, the content and purpose of the informal modeling tools needed to

49

DFM

Y

REFINE

o |

L > T X
Uncharted Waters ;/

ERM

<>

Informal Specification

Figure 7. OML: Bridging the Gap

be analyzed. This, in turn, illuminated the general process, not just one translation effort.

This is a beneficial software engineering approach.

Building a modeling language was not our first (nor most desirable) approach for providing
an intermediate representation. Using an existing specification language was the first, most logical,
approach for providing an intermediate language. In searching for a language to serve as the inter-
mediate representation, we reviewed many currently available specification languages. Chapter 11
provides a summary of the specification languages surveyed. At the conclusion of our language
survey, the Requirements Modeling Language (RML) (15) and the REFINE language (22) were the

leading candidates for filling this role. However, after more intense scrutiny, neither of these lan-

50

guages were adequate for providing a unified representation of DFMs, STMs, and ERMs that can

be easily translated into an executable specification.

RML was built with several beneficial modeling language principles in mind. Its mathemat-
ical basis is built on first order logic, and it incorporates several beneficial abstraction principles.
RML specifications take advantage of the direct and natural modeling abilities of object-oriented
decomposition, including generalization and aggregation. It also allows the expression of assertions,
the description of entities, and the capturing of activity behaviors. We found all of these capabili-
ties and qualities very important for our intermediate language. However, after studying the RML
grammar and the example problems provided in Greenspan’s dissertation (15), we found numerous
difficulties and inconsistencies with using RML. The principles upon which RML was built and
many of its constructs and capabilities have been incorporated into the Object Modeling Language
(OML). However, using RML in its entirety does not satisfy our needs. The following are some of

RML’s problems which have been addressed by OML.

¢ RML does not support the direct modeling of the analysis models focused on in this thesis. In
OML, we have modified several of RML’s constructs to clearly and directly support a unified

representation of entity relationship, data flow, and state transition models.

o RML establishes relationships within entity descriptions without fully describing the details
of the relationships. It uses referential attributes to relate objects but does not capture details
of the relationships such as direction or multiplicity. Referential attributes do not support
object-oriented requirements for loose coupling of objects. As mentioned in Chapter III, the
UAM, and thus OML, eliminates the use of referential attributes by using relation tables.
Additionally, OML relationships possess a cardinality attribute to capture multiplicity, and
Association class objects have implicitly defined directions (flows: unidirectional; events:

unidirectional; relationships: bidirectional).

51

o RML is extensible. The language allows the user to specify an unrestricted set of constructs at
various levels of abstraction which makes the language very difficult for automated translation.
Knowledge required by an automaton to manipulate an extensible language is beyond the
scope of this thesis. OML has been restricted to only allow instances of predefined OML
classes, classes of Entity class objects (one of the predefined object classes), and instances
of these user-defined Entity classes. These restrictions help support the translation of OML

into an executable specification.

e Some RML constructs are not amenable to an automated translation, and RML does not
always require the explicit definition of an object’s description. RML allows the use of abbre-
viated constructs in its grammar. Also, when binding a value to an object’s attribute, RML
does not require the attribute to be specified if it can be understood from the context in which
it is used. While this may not present problems in all cases, it can lead to ambiguities and
performance degradation in an automated translation. The translation of context-sensitive
languages into another format requires a more intense translation process. Such translations
require extra and more complex searching and added semantic checking which consequently

result in degraded system performance.

Defining a subset of the REFINE language was another option for specifying an intermediate
representation. On the surface, REFINE was an appealing choice since it would eliminate the need
to build a translator or compiler to convert an intermediate language into REFINE, and unlike RML,

REFINE’s grammar and syntax is robust and well-defined. REFINE is a wide-spectrum language

which allows the analyst to specify problems using any combination of high- or low-level constructs.
Additionally, it possesses constructs that allow functional, logic-based, and object-oriented solutions
to a problem to be developed. Further, we are very familiar with REFINE’s syntax and capabilities.

From these perspectives, REFINE was an attractive choice. But, REFINE posed some problems

52

as an intermediate language which conflicted with our goal of providing a generalized translation

process.

e We desired our intermediate language to be specifically tailored to the domain of the Unified
Abstract Model (UAM). The domain-specific language, therefore must be capable of directly
modeling the components of ERMs, DFMs, and STMs as defined by the UAM. Although
the REFINE language is capable of representing informal models, it does not enforce a direct

mapping into the UAM.

e We desired our intermediate language to be a generic host for translation into languages
other than REFINE. By using REFINE as our intermediate language, we would be limiting the
applicability of our translation process to the REFINE environment and those systems that

support REFINE.

The Object Modeling Language was designed to provide the most desirable capabilities of
both RML and REFINE, and to enable a unified representation of entity-relation, state-transition.
and data-flow models. Many of REFINE’s capabilities, such as predicate logic, set and sequence
constructs, and behavioral description were incorporated into OML. The unified representation
provides an intermediate form that captures the three informal models in a simple, yet explicit,
manner which is easy to convert into an executable specification using an automated translation
process. Section 4.3 defines the syntax, semantics, and capabilities of OML and discusses how the

three informal modeling techniques are integrated into the OML architecture.

4.2 OML Goals

The investigation of several specification languages enabled us to define what capabilities we
wanted in OML. However, how do we know if OML is a good specification language? Before this
question can be answered, we must establish who is intended to create OML specifications, and

once created, who is intended to use OML specifications.

53

OML specifications should be developed by a software engineer working in concert with an
application domain specialist. We envision specification development to be aided by an automated

elicitation tool that

o eliminates syntactic errors,

enforces the standards of a “good” specification as defined below,

e encourages the use of object-oriented decompositions,

avoids specifying implementation details, and

formats requirements into a textual (compilable) file that satisfies OML’s syntax and seman-

tics.

The problem must have been analyzed in terms of ERMs, STMs, and DFMs prior to using this tool.
The software engineer must be able to develop these informal models to describe the problem or be
able to interpret models developed by others. He must also correctly :onvey the information in the
dialogue with the elicitation tool as the OML specification is generated. The application domain
specialist‘s knowledge is critical to ensure correct performance of the specification. The domain
specialist is needed to ensure that the details included in the informal specification, as entered
into and translated by the tool, are correct and to verify that the specification’s performance will
meet the user’s needs. As we developed our OML specification, detailed knowledge of the intended
operation of the sample problems was found in the problem description rather than the informal
models. The domain specialist would be bcst able to provide this detailed knowledge for a real

system.

Once generated, an OML specification is then manipulated by another tool that parses an
OML specification into a REFINE Abstract Syntax Tree (AST) representation and then transforms
the information in the AST into an executable REFINE specification. Figure 8 depicts the process

of eliciting requircments to develop an executable specification. We have developed the translation

54

Generates
Elicitation
Tool
Prompts User
for Y
Informal Model
Data
OML
‘ Specification
User's Parsed
‘nforma' Model By
Data
[
Translation
Tool
Executable
Simulation
Refine
Executable

Specification Converts the
OML Specification
into

Figure 8. Translation Process: Informal Requirements to Executable Specifications

software that performs the operations required by the latter tool. The translation methodology is

detailed in Chapter V and the translation software is provided in Appendix C.

Requirements can also be formatted directly (manually) into an OML specification file, as
was done for this research (since an elicitation tool does not currently exist), but this is not the
recommended approach. Automating the generation of OML specifications provides the following

benefits:

55

e It will consistently generate OML specifications that are syntactically and semantically cor-
rect. This does not mean the problem has been perfectly specified. Rather, it guarantees the

translation software will be able to convert it into an executable form.

e It will guide the specifier in consistently developing a good specification. Note: Our definition

of a good specification is described later in this section.

OML was designed to encourage the writing of good specifications and to model specifications
that possess those qualities. Since the elicitation tool must interface with OML, the builder is
constrained to build a tool which enforces the way in which requirements are specified. That is, the
user will be encouraged to specify his requirements in a manner that meets the standards of a good
specification. However, writing a specification in OML neither guarantees that a problem is well-
specified, nor guarantees that it is correct. OML’s strength is that it models a problem in a manner
which is easy to elicit from the user and which contains all the information necessary to facilitate
its direct translation into an executable specification. By exercising the executable specification,
the user can test the specification to determine if it correctly captures the desired behavior. If
the executable specification does not perform as desired, modifications are simply entered into the
elicitation tool and a new executable specification is generated. In this respect, OML specifications
are not intended to be manually generated or directly maintained. The generated REFINE source

code is also not intended to be directly maintained, but re-generated by the translator.

In addition to testing the correctness of the informal specification, the executable REFINE
specification also serves as a basis for software design. As illustrated in Table 1, correcting require-
ment errors before the system progresses into software design (or later stages) can significantly
reduce the cost and amount of time required to fix software errors. A consistent and correct spec-

ification provides a firm foundation for software design and development. A formal specification

also provides the formalism necessary for the automated generation of source code. We believe that

automatic software generation will provide the same order of magnitude improvement in software

production in the 1990s as compilers and high level languages did in the 1960s.

In order to evaluate the goodness of OML, it is important to understand what a specifica-
tion is used for and some of the principles of good specification. Chapter II summarized several
articles which addressed these issues. Balzer and Goldman (3) authored an article which addresses
the criteria for judging specifications, the principles of good specifications, and the corresponding
implications for specification languages. OML satisfies many of their implications for a “good” spec-
ification language. This section summarizes Balzer’s and Goldman’s ideas. The reader is referred

to the article for a complete description of their standard.

There are three general criteria for judging specifications. These criteria are directly related

to how well the specification satisfies its primary uses.

1. Understandability. Since the specification serves as a contract between the specifier and
developer for the system to be developed, it must be clear, concise, and unambiguous. It also

serves as a basis for design and implementation.

2. Testability. The specification is used to determine whether the developer has satisfied the

contract; therefore, it must be testable.

3. Maintainability. The contract will change over time, thus the specification must be adaptable

to change. (3:58)

The following principles of good specification ensure the criteria mentioned above are satisfied.
Following the listing of these principles, OML is evaluated against each principle. One of the goals
of OML is to guide and constrain th. builder of the elicitation tool to enforce standards in his
tool which lead to specifications that are understandable, testable, and maintainable. A good

specification should:

57

1. Separate functionality from implementation. A specification is a description of what is desired

rather than a description of how the desired action is accomplished.

2. Provide a process-oriented description o capture dynamic behavior. “Both the process to be

automated and the environment in which it exists must be described formally (3:59).”

3. Encompass the system and environment of which the software is a component. The specifica-

tion must accurately portray the system and environment with which the software interacts.

4. Accurately model the user’s view of real world objects. The objects and operations defined

in the specification must correspond to real objects and actions in the domain.

5. Validate the resulls of the implementation. The specification must be complete and formal

enough to support functional testing.

6. Tolerate incompleteness and facilitate changes. System requirements frequently change as

time progresses. The specification’s structure must easily allow modifications.

7. Localize and loosely couple objects. Independently specified components greatly improve the

maintainability of a specification. (3:58-60)

OML allows the specification of a problem that satisfies all of the above mentioned principles.
The OML syntax is precise, clear, unambiguous, and behavior-preserving. The specification of each
object is understandable and has only one interpretation. Behavior is described in terms of what
happens and it captures all necessary information without adding or losing any meaning. OML’s

capabilities satisfy each principle in the following ways:

1. OML fosters the separation of functionality from implementation through its mathematical
and behavioral description capabilities. Activity behaviors can be specified in three different
ways: Decision Tables (DT), Pre- and Post-Conditions (PPC), and Program Design Language

(PDL) . Both DTs and PPCs strictly support the description of what is desired as opposed to

58

how to obtain the desired result. Additionally, the predicate logic capabilities of OML further

separate the specification of a problem from implementation details.

. OML can capture the dynamic behavior of a problem by describing it in terms of processes or
states and their associated behaviors by modeling all components of data flow and state tran-
sition models. PDL can be used to describe continuous type behaviors which DTs and PPCs
cannot capture. Continuous behaviors require that operations be performed on an object
over a period of time rather than at an particular point in time. For example, continuously
monitoring the status of a system while other operations are occurring is a continuous type of
behavior, while checking the status of a system at a specific point in time is not a continuous

behavior.

. OML’s ability to model ERMs (objects and relationships), DFMs (functional transforma-
tions), and STMs (dynamic behavior) allows the description of a software problem and its

associated system and environment to be consistent with informal modeling techniques.

. OML was designed to support the object-oriented architecture defined in Chapter III. The
modeling of a problem in terms of objects from the real world and relationships between those
objects promotes more understandable requirements, better designs, and more maintainable
systems (23:ix). Furthermore, OML has a well-defined syntax that is easy to learn and

understand.

. An automated translation process has been developed to transform an OML specification
into a REFINE executable specification. The ability to execute an OML specification allows
its immediate testing to determine if it specifies the intended behavior. Additionally, this
formal specification serves as a basis for design, implementation, and validation testing. The

transformation process is described in Chapter V.

59

6. Requirement modifications are easily accommodated in OML. Since an automated translation
process exists to transform an OML specification into an executable specification, the effects

of requirement changes can be immediately seen.

7. Two architectures for OML were described in Chapter III. The first architecture modeled ob-
jects with referential attributes to show relationships between objects. This architecture was
refined to reduce its strong coupling between objects. The final architecture on which OML
was built eliminated all such coupling by removing referential attributes and by describing

objects in their purest form with object relationships modeled in a relation-table.

4.3 OML Syntaz and Semantics

This section summarizes OML’s syntax requirements and several important design decisions
made while defining the OML grammar. The complete definition of OML’s grammar in Backus
Naur Format (BNF) is provided in Appendix A. As described in Chapter III, an OML specification
is created by defining a set of Analysis Objects (see Figure 5, page 41) which specify the problem.
The objects that can be instantiated are entities, stores, processes, states, behaviors, relationships,
events, flows, and relation-tables. The attributes associated with each of these objects are shown in
Figure 6 and are also delineated in the OML grammar, Appendix A. In addition to incorporating the
principles mentioned in the previous section, we made several other design decisions concerning the
OML grammar which have simp!ified the processes needed to automatically generate and translate

OML:

e Require as little informatlion as possible in the specification withoul sacrificing clarity and
losing critical information. This minimalist attitude was responsible for simplifying the OML
syntax. For example, many languages such as Ada require the declaration of variables before
they can be used. In OML, variables are declared and used when they are instantiated in

Entity Objects. Requiring a minimal amount of punctuation was also desired; however, in

60

order to eliminate parsing errors, a certain amount of punctuation was included. Only three
types of objects require end of line punctuation. If more than one user-defined attribute is
given for an Entity object, then each attribute definition must be separated by a semicolon.
Similarly, each pair of state space variable names and values must be separated by a semicolon.
Lastly, all rows in a decision table and all pre-post-condition statements must be separated

by a semicolon.

Developing a specification which is easy to parse and translate was more important than
developing a specification that is visually appealing. Since OML specifications are intended to
be generated by an automated tool, the convenience of manual generation was not of great
concern. We were more concerned with developing a language which allows a straightforward
process for creating and translating OML specifications. Even though we were not concerned
with the manual generation of OML specifications, this does not constitute a license for the
specification language to specify constructs incompletely or inconsistently. On the contrary,

all uses of punctuation, keywords, and definitions are written in a consistent manner.

Optimizing the size of the specification was not a concern. OML’s grammar could have
been modified to simplify certain constructs and allow more compact specifications, but this
would have added extra complexity to the grammar and added difficulty in translating the
specification. Optimizations can also reduce the clarity of a specification which can lead to
ambiguities. Optimizations of these kind are not an appropriate concern for a specification

language. This is best reserved for the actual implementation. (3:58)

Capture system behavior using Decision Tables, Pre- and Post-Conditions, and Program De-
sign Language. Capturing the correct behavior of a problem in the specification was a sig-
nificant hurdle when defining the grammar. There are two general types of behavior that
must be captured: control activities and transformational activities. Control activities define

the sequencing of activities or events which must take place in a system. These activities

61

are generally considered to execute instantaneously although they actually execute in a very
short amount of time. Transformational activities occur over a period of time, cause a state
change to occur within the system being specified, and can be thought of as procedures or
functions in a high level language such as Ada. OML provides three methods for capturing
these behaviors: Decision Tables (DT), Pre- and Post-Conditions (PPC), and Program De-
sign Language (PDL). DTs and PPCs are excellent for capturing what the desired behavior of
a system is without specifying how to accomplish that activity. PDL is suitable for capturing
desired behaviors which are too complicated to capture in either DTs or PPCs and must be

limited to these situations.

Variable declarations must be data typed. As a rule of thumb, a specification should not impose
any implementation details. One example is not requiring the user to specify the data type of
variables or object attributes (i.e., integer, real, boolean, etc). However, to convert an OML
specification into an executable REFINE specification requires that variable types be defined.
Perhaps it is possible to extrapolate the data types of variables from other information in the
specification, but this requires a level of knowledge base sophistication which is beyond the

scope of this research.

Object Classes can only be created for Entity Objects. Modeling data elements using classes
and instances is a natural way for modeling data and is very important for conceptualizing a
problem. Entities, in an ERM, take advantage of such structuring of data. For this reason,
Entity objects can be created as classes or instances of a class. Many times during informal
analysis, other types of objects such as states and relationships are organized into classes and
instances of classes. For the purposes of developing an automated translation, we have not
seen a need for specifying hierarchies of these types of objects since all necessary behaviors
are usually specified at the leaf nodes (e.g., instantiations). If, at a later time, this design
decision is not sufficient for all applications, then a class structure can easily be added to the

OML grammar in a manner similar to that for Entity objects.

62

e User-defined attributes can only be defined for Entity Objects. Entity objects are the only
objects that have user-defined attributes in addition to those predefined in the OML archi-
tecture. Since Entities are used to describe real-world objects, the OML must be flexible
enough to characterize all required aspects of these objects. User-defined attributes are used
to describe these aspects. On the other hand, other Analysis Objects do not need as much
descriptive flexibility as Entity objects and cannot be augmented with user-defined attributes.
If descriptive deficiencies are found, additional mandatory or user-defined attributes can be
added to the grammar. The difficulty we expect to encounter if other Analysis Objects are
allowed to have user-defined attributes is how those attributes will tie into the execution of

the specification, and how the translation software will tie them in.

o One or more relation-tables can be created. All relationships can be captured in one relation-
table or broken down into several different relation-tables. Creating one universal relation
table is easier to build; however, multiple tables can also be useful. From an automated tool
viewpoint, multiple relation tables can improve searching speed and modification efficiency if
implemented properly. For example, making a relation-table for each kind of Association Ob-
ject (Flow, Event, or Relationship) can simplify the search for a specific relationship. From a

human understanding viewpoint, separate tables will improve readability and understanding.

o Decision Table rules are represented by the columns. Decision tables can be constructed
in several different ways. We selected the format recommended by Hurley (17). In this
format, the table can be envisioned as four quadrants. The top half of the first column
in a decision table represents the first quadrant. The entries in this column identify the
pre-condition variable names for each rule. The bottom half of the first column represents
the second quadrant which defines the post-condition variable names associated with each
behavior rule. Each remaining column in the table represents a behavior rule. The top half of
each subsequent column defines the values for each pre-condition variable, while the bottom

half of the column stipulates the post-condition values associated with the rule. If the pre-

63

condition variable values in the top portion of a column are satisfied, then the values in the
bottom portion of the table are assigned to the post-condition variables. In OML the top
and bottom portions of a decision table are separated by the symbol “~ —>”. The illustrative

problem at the end of this chapter provides an example of a decision table.

OML has the following semantic requirements:

All analysis object names must be untque. This requirement was levied to simplify the
process of transforming the format of variable names in behaviors. Entities and events are
referenced and operated on in the behavior objects. The object names could be made unique
by the translation software, but this would make resolving all the references in the behaviors
more difficult. For example, if an entity and a store had identical names, the translation
software would assign a unique name to each object. While translating the behaviors, the
translation software would have to transform the references to objects by their contezt, or
rely on human intervention whenever a name could map to more than one possible unique

name.

An entity object’s range field defines the atiribute’s legal range of values. This requirement
is needed for static and dynamic constraint checking, and to assure that the state-space is

fully defined.

The first state in the OML specification is assumed to be the start state. Rather than
providing additional syntax to specify a start state, we felt that this positional notation
would be a natural representation of the start state. A provision needs to be included in the

requirements elicitation tool to identify an initial state.

The initial values assigned to all entity attributes must satisfy the stale space of the initial
state. In a state-based model, initial values must be defined when specifying entities. These
initial values must be in the domain of the start state (the first state specified). When the

specification is executed, the initial state space is verified. Incorrect specification of initial

64

values will cause a premature termination of execution. To keep the specification process

unambiguous, we intentionally omitted any mechanism for defining default values.

The data variables used in the expressions and statements in behavior objects must be at-
tributes of entity or flow objects. The entily atlributes must be fully referenced by giving both
the object name and the atiribute name (e.g., object-name.attribute-name). The arguments
used in defining each state’s state-space must refer to existing entity attributes. A fully
specified system will have its state-space defined. The state-space is described in terms of the
objects in the state-space and the values of those objects that are pertinent to any particular
state in the systemn. This requirement merely states that the specifier must declare all the
objects on which any state in the system depends in order to declare the state-spaces of the
individual states. Therefore, all events and entities should be defined prior to states and
behaviors so that state transitions defined in the behaviors can be made based on objects

that exist.

Each state’s state-space definition must include the value or range of values of all object
attributes that are imporiant to the state. OML has no implicit means of including values
for entity attributes in a state-space. Therefore, all objects required to have certain values
must be included in the state-space definition of the state using OML expressions and “dot”
notation. Because the state-space is verified each time the state is entered, this requirement
is useful to verify that events and behaviors that modify the entity values are performed in a

manner that is consistent with each state’s specified state-space.

The key and order atiribules only apply to sequence-natured stores. Because sets are un-
ordered groupings that have no duplicate members, key (the field the store is ordered on) and
order (ascending or descending) are meaningless (and therefore ignored) during the transla-
tion of set-natured stores. A more thorough discussion of this feature of Stores is given in

Chapter V, Section 5.4.8.

65

o A flow-object’s flow-data atiribute requires the name of the entity class of the data that will be

carried by the flow-object. This provides the translation software with an entity class (that

indicates the type of data the flow will carry) to instantiate when creating the flow-object .

Ezternal events must be associated with a behavior object to cause a change in state-space
object values. External events represent changes in the real-world state space (caused by
objects external to the modeled system) that the system must detect. The behavior associated
with an external event changes the values of entity-attributes causing a change in the system’s

state space.

The ICO association used in relation tables is reserved for relationships between a process,
state, or ezxternal event and its behavior. 1CO allows the translation software to match the
appropriate object with its behavior to compensate for the elimination of referential attributes

from the object definitions.

The event field in behavior objects will only be used by state behaviors and conirol process
behaviors. Ezxternal event behaviors cannot specify next events. State and control-process
behaviors contain information that tells the control architecture what state or process should
be executed next. These are the only behaviors modeled in OML specifications that have
controlling characteristics, because they must model all the decision-making capability of
a state or control process. All other behaviors model! transformational activities only and

cannot contain the directional capability that is modeled by the event field.

If multiple behaviors are associated with state objecls, they must be listed in order of exe-
cution in the relation table. Each behavior will be ezeculed in this order and the last stale
behavior should specify a next event. If the “do” activity of a state requires that a series of
transformations occur prior to the execution of a state transition, this can be modeled using
multiple activities. Because the control architecture cannot yet deal with multiple events at

one time, we had to restrict the number of events that were returned to the controlling func-

66

tion. Events cause a change in the flow of control. The controlling function of the simulation
routine assumes that a state transition is being made. No facility exists for the controlling
function to recognize a nested state or to determine whether it should return to a previous

state after several transitions.

All external events, processes, and states must have behavior objects. These objects explicitly
state what actions should occur during a state or process, or what state-space attributes

change as the result of an external event.

Set operations have been incorporated into OML. In the following discussion, S and X are

sets and x is an element of a set:

— The set-diff operation requires two arguments, both of which are sets (e.g., S set-diff X).

This operation removes the elements of the second argument from the first argument.

— The union operation requires the first argument to be a set and the second argument to
be an element (e.g., S union x). This operation adds the second argument to the first

argument.

— The in operation requires the first argument to be an element and the second argument
to be a set (e.g., x in S). This operation returns true if the first argument is in the second
argument.

— The getitem command locates a specific item in a store and allows the item to be modi-
fied, but does not remove the item from the store.

— The getset command returns a set of items in a store but does not remove the set from

the store.

4.4 Composing an OML Specification from an Informal Model

4.4.1 How to build a specification. In order to represent a problem in an OML specification,

the user must have already abstracted the problem using informal analysis models. Frequently,

67

when analyzing a problem, all three informal models (entity relationship, state transition, and data
flow models) are needed to capture all of the information required to solve a problem. However,
for some applications, it may not be necessary to use all three models. For example, it may be
possible to fully specify a problem by only using two of the three informal models. As discussed
in Section 4.5.1, we were able to completely inodel the Home Heater System Problem by only
using ERMs and STMs. Similarly, our analysis of the Library System Problem (Section 4.5.2) only

required us to develop an ERM and a DFM.

The order in which these models are created is influenced by different modeling approaches.
The functional (structured analysis) approach, as described by Yourdon (29), places primary em-
phasis on the functionality of the system. Using this approach, DFDs are created first, followed
by STMs, and then ERMs. The object-oriented modeling approach presented by Rumbaugh (23),
places more emphasis on first identifying the objec's in the application domain and then defining
the functions that act on those objects (23:7). Using this methodology, ERMs (object models as
per Rumbaugh) are created first, followed by STMs (dynamic models), and finally DFMs (func-
tional models). We strongly advocate the object-oriented approach to modeling a system. An
object-oriented description of the objects and relationships in a system is very useful for modeling
real world concepts and improving understanding. The reader is referred to Rumbaugh’s text (23)
on object-oriented analysis and design or Yourdon’s text (29) on structured analysis for guidance

in developing these models.

It is also important to understand how the three models interrelate. The ERM forms the
groundwork for the other two models. Therefore, the STM and DFM are related to the ERM and

each other in the following ways:

e The activities and actions of an STM are represented as processes in the DFM.
o Flow objects in the DFM correspond to entity objects in the ERM. (23:179)

e State and process behaviors only use entity attributes defined in the ERM.

68

The STM shows the sequence in which processes are performed. (23:138-139)

o The entities in the ERM become stores in the STM.

Control flows in the DFM are represented as events in the STM.

Processes accept and send cntity classes defined in the ERM. (24:97)

Until the elicitation tool is developed, OML specifications must be manually generated.
Therefore, the development of OML specifications is of interest. Although there are no restrictions
on how OML specifications can be created, we recommend that the developer begin by specifying
all data objects. In an object-oriented decomposition, these objects will be modeled by ERMs. If a
functional approach is used, this implies that the data described in a DFM and its accompanying
data dictionary should be represented first. It is important to represent data cbjects first since state
descriptions and data transformations are meaningless unless there are objects to be manipulated.
Once the data objects have been defined, the order in which other OML objects are created is not

critical.

Since OML specifications will be generated by a requirements elicitation tool, the following
discussion is intended to provide guidance in its development. The syntax and semantics of OML

are specified in Appendix A.

o The elicitation tool should save information in any convenient form and should be capable of
generating an OML text file. The OML specification is simply a flat file representation of the

informal analysis models.

o Instantiate all Entity and Relationship objects necessary for representing the problem’s ERM.
The user can create an Entity class (set of entity instances) or an Entity Instance. The user
can then define attributes to d¢ ibe the entities. Every attribute must be given a range
of valid values and an initial value. Whether these values are defined in an Entity class,

in an Entity instance, or in a combination of both is up to the user. Once the Entitics and

69

Relationships have been created, then create a Relation-Table object and add the relationships

between these objects into the table. These relationships are bidirectional.

Represent the STM in OML. First, define the State objects in the system. The state’s state-
space attribute must define the values or ranges of all important entity-object attributes which
characterize the state. These attributes must be referred to by their full name. For example,
the Status attribute of a Motor entity instance would be referenced by motor.status. After
defining States, create the Events which cause a transition between two States. Events, by
definition, are unidirectional. Next, create the Behaviors associated with each State. When
state behaviors are being described, a next event must be identified with each control path
of the behavior. This is necessary to direct the sequencing of states. Variable names used
in behavior descriptions must exist as Entity attributes. Once these three object types have
been defined, add entries into the Relation-Table to associate all the objects (i.e., relate states

with events, and states with behaviors).

Represent the DFM in OML. Objects should be created in the following order: Process
objects, Flow objects, Entity objects, Store objects. Process objects are characterized by
their behavior. Therefore, Behavior objects must be created and associated with a Process
object in the Relation-Table. Flow objects are characterized by the data (entities) they
transfer. Accordingly, associations must be entered inte the Relation-Table to relate Flows
with Entities. Stores are represented by a set or sequence of Entities. For this reason, Store

objects must indicate whether ordering is important, and if so, define a key to sort on.

Save and compile the file. Before a file can be compiled, the REFINE environment must be
running and the translation software must be loaded into the REFINE environment. Details
on starting REFINE and loading the translation software are included in Appendix F. To

parse an OML specification, type the following command at the REFINE prompt:

70

(parse-file(your-file-filename,
false,
find-object(’re::grammar, ’oml),
find-object(’re::grammar, ’oml),
find-package(“RU”)))

The next section discusses how two sample problems were implemented in the Object Modeling

Language.

4.5 Ezample Problems

Chapter III defined the mapping of informal model elements into OML objects. Previous
sections of this chapter defined the syntax and semantics of OML and also the process for creating
an OML specification. This section implements two sample problems in OML. They were chosen

for the following reasons:

1. To validate the effectiveness of OML as a specification language.
2. To serve as an example of how a problem is specified in OML.

Testing the ability and flexibility of OML to represent different types of problems is one way of
validating the Object Modeling Language. Additionally, since the OML specification will be created
by an automated tool, the following problems serve as examples of the type of output the tool must

be capable of generating.

The first problem, the Home Heater System, is a state-based problem and is conveniently
modeled using ERMs and STMs. The second problem is the Library System which is a static,
data storage problem and is represented by ERMs and DFMs. Because of their differing nature,
these problems were chosen to test the ability of OML to represent both dynamic and static
oriented problems. Both problems were taken from the Fourth International Workshop on Software

Specifications and Design (18).

4.5.1 The Home Heater System Problem. The Home Heater problem can be accurately

specified by an Entity Relationship Model and a State Transition Model. A Data Flow Model

71

can also be used, however in this case, it only represents redundant information. The complete
problem statement, an analysis of this problem, and the complete OML specification are provided
in Appendix D. With some modifications, the state transition and entity relationship models
developed by Blankenship are used for this analysis (6:Appendix C). Regardless of whether the
specifier chooses to analyze this problem in an object-oriented or functional fashion, the problem

can be easily translated into OML.

The Heater problem describes the furnace system components and the sequence of control
events necessary for regulating the air temperature of a home. When specifying almost any problem,
the ERM should first be translated into OML. Figure 9 depicts the entity relationship model for

the Heater problem.

Begin by converting the entities in the ERM into OML entity objects. The following example
converts the OIL-VALVE and WATER-VALVE entities into OML entity objects. The two valves are
grouped under a general class of valves. This is done by creating a VALVE object class and by
making the OIL-VALVE and the WATER-VALVE instances of the VALVE object. In this case, the oIL-
VALVE “is a” (instance of) VALVE and the WATER-VALVE “is a” (instance of) VALVE. This approach
is not necessary for specifying this problem; however, we've modeled the valves in this manner to

demonstrate how object classes and instances can be created.

As defined in the OML grammar, two types of entity objects can be instantiated: entity
classes and entity instances. The user has the freedom to specify any attributes which define that
object. Attributes defined in entity class objects are inherited by all subtypes of that class. If
attributes are desired at the class level, they can be specified either by a full attribute definition, or
by an abbreviated attribute definition. A full attribute definition requires the attribute’s name and
type, its range of legal values, and its initial value to be declared. An abbreviated definition can be
used in the class definition by declaring the attribute’s name, type, and range of legal values. In

the second case, the initial value is specified when the object instance is created. Attributes can be

72

Status

Master
Switch

Fuel Flow
Sensor

Combusti
Sensor

Five Min
Timer

Five Sec
Timer

Sensor

Timer

Monitors Q
tr

Monitors

Controller

Thermostat

Sets

Water

Oif
Valve

Water
Valive

Figure 9. Home Heater Entity Relationship Model

Motor

CDICE

declared as any of the following types: integer, real, boolean, string, set, or sequence. The ranges
can be specified either by enumerating each possible value or by giving a start value and an end

value. Ranges are not required for boolean or string type attributes.

For this example, a valve class and two valve instances must be created. The OML code that

corresponds to these objects is:

VALVE class-of entity
type : external
parts
status : symbol range {open, closed}
OIL-VALVE instance-of VALVE
values
status : closed
WATER-VALVE instance-of VALVE

values
status : closed

Since both valves have a status attribute, we chose to declare the status attribute in the class
declaration and to define initial values at each instance declaration. As another option, since the
OIL-VALVE and WATER-VALVE have the same initial status, the initial value can be defined in the

class definition as shown below.

VALVE class-of entity
type : external
parts
status : symbol range {open, closed} init-val closed

OIL-VALVE instance-of VALVE

WATER-VALVE Instance-of VALVE

Once all the Entity objects are created, the next step is to create the Relationship objects which
relate two entities together. Referring to Figure 9, both valves are related to the controller object by
a POSITIONS relationship. Since the definition of a Relationship object does not force its coupling
to any specific entity objects, the same POSITIONS relationship can be used to relate both the
OIL-VALVE and the WATER-VALVE to the CONTROLLER. Thus, the OML code which models this

relationship is:

74

POSITIONS instance-of relationship
type : general
cardinality : 1-1

The remaining relationships are created in a similar manner. The PosITIONS relationship object and
the VALVE objects have not yet been associated together in the OML file. Associations between
objects are captured in a Relation-Table. Once the relationship objects are created, the entity
objects and relationship objects should be associated together in a Relation-Table. The vaLvES
and CONTROLLER are associated together in the following abbreviated table:

TABLE] instance-of relation-table

CONTROLLER, POSITIONS, VALVE;
CONTROLLER, MONITORS, MOTOR;
CONTROLLER, MONITORS, THERMOSTAT

Note that all rows of a relation-table end with a semicolon ezcept for the last row. Once these
associations have been entered into the relation-table, all the objects necessary for representing an

ERM in OML have been defined. The next step is to specify the STM.

Figure 10 illustrates an STM for modeling the Heater problem. In order to represent an STM

in OML, State, Event, and Behavior objects must be created.

The State objects should be created first. The MOTOR-ON state of Figure 10 is provided here
as an example. This particular state assumes that certain entities such as air, motor, ignition, and
OIL-VALVE have been previously declared, since the state-space references the attributes of these
objects.

MOTOR-ON instance-of state
state-space : MASTER-SWITCH.status = on;
AIR.temp < CONTROLLER.tr - 2;
MOTOR.status = on;
MOTOR.speed = inadequate;

IGNITION.status = off;
OIL-VALVE .status = closed

The state-space attribute must define the values of all objects that characterize the system during
that state. Notice the state space is eomposed of previously defined entity attributes and specific

attribute values. The entity attributes should be referenced by using the “dot” notation which

75

o -

8
E2, E8 dte - >
2
3
-E—;'—z?—'o— Water-Heating
; L3 8,9,10) Phrigios i £6
ES,__EB_ Running
E9, E10 6
s 1
Ee Shutdown qu);,
- 12
6
& | Wait-5-Min L4

Ett,
E12

Internal Events External Events

10. Abnormal-Combustion
11. System-is-Reset
12. System-Is-Off

1. Master-Switch-On E1. Swich-Tumed-On

2. Motor-Tumed-On E2. Ak-Temp-Below-Preset

3. Oillgnitied E3. Adequate-Motor-Speed

4. Water-Valve-Opened E4. Water-Temp-Above-Preset
5. Done-Heating-Water ES. Ar-Temp-Above-Preset

6. Motor-Tumed-Oftf E6. Five-S8ec-Timer-Expires

7. Done-Walting E7. Five-Min-Timer-Expires

8. Master-Switch-Off E8. Switch-Turned-Oft

9. Abnormal-Fuel E9. Unsafe-Combustion-Sensor

E10. Unsate-Fuel-Sensor

E11

. Reset-Systemn

E12. Systemn-Tumed-Off

Figure 10. Home Heater State Transition Model

76

includes the instance-name and the attribute-name (e.g., MOTOR.status). Once the state objects

have been created, Event objects, which model the transitions from state to state, should be created.

Events that cause a transition between two states in the system are modeled as internal events.
There are two internal events which cause a transition out of the MOTOR-ON state. One event causes
a transition into the WATER-HEATING state and the other event results in a transition to the OFF
state. Event objects are very easy to create and we have named the first event, OIL-IGNITED. It is

created as follows:

OIL-IGNITED instance-of event
type : internal

The type attribute describes whether this event is from an internal source or an external
source. External events do not cause a transition between two states, but rather indicate that
certain external entities modeled by the system have changed value. To intrcduce changes to
objects in the system, external events have an associated behavior. All of the Event objects must

be associated with State objects, and Behavior objects (if applicable), in the Relation-Table.

In addition to its state-space attribute, a state is characterized by the activity being conducted
in that state. Such activities, which are captured in Behavior objects, should be created next. The
behavior associated with the MOTOR-ON state is defined by the FURNACE-MOTOR-ON object. This

behavior is described by a decision table as follows:

FURNACE-MOTOR-ON instance-of behavior

MOTOR.speed, dont-care, = adequate;

MASTER-SWITCH.status, = off, = on,

-—>

IGNITION . .status, off, on;

OIL-VALVE .status, closed, open;

MOTOR. status, off, on;

event, MASTER-SWITCH-OFF, OIL-IGNITED
Decision tables are broken down into four sections. The left-most column above the “~ —>” defines
the pre-condition variables. The left-most column below the “~ —>” defines the post-condition

variables. Each subsequent column stipulates one rule of the decision table. Each entry above the

77

“~ —>" defines the required value for the pre-condition variable. Similarly, each entry below the
“~ —>” defines the value that must be assigned to the post-condition variable. For example, the
first rule (second column) is read as: If the master-switch is turned off then turn the ignition off,

close the OIL-VALVE, turn off the motor and then execute the MASTER-SWITCH-OFF event.

The dont-care symbol in the second column is an OML built-in value which is used to indicate
that the variable defined in the left hand column does not affect the first rule. All column entries
should be explicitly assigned some value or expression. This eliminates any potential ambiguity in
the behavior specification. Therefore, if the value of a variable does not affect the rule, then the
“dont-care” symbol should be entered. The Library problem will show how pre- and post-condition

statements can be used to describe a behavior object.

Finally, the behavior objects must be associated with the state or event objects they describe.
Since each state is characterized by an activity, a built-in association, ICO (is composed of), is
provided to relate these two objects. The ICO association also applies to external events and their

behaviors. Therefore, a State-Behavior association is entered into a Relation-Table as follows:

MOTOR-ON, ICO, FURNACE-MOTOR-ON;

These are the only types of objects and relationships needed to model the Heater Problem.
This problem also shows the general process needed for translating ERMs and STMs into OML.
The user’s manual in Appendix F provides guidance on compiling, translating, and executing the
OML specification. The next section presents a different type of problem. It requires a more static

representation of objects that do not imply any sequencing of events.

4.5.2 The Library Problem. Unlike the Home Heater, the Library problem is not a state-
based problem. This problem specifies the legal transactions that staff and ordinary users can
perform, and the results of their actions. There are no sequencing requirements that stipulate an

ordering of the operations. Therefore, this problem can be satisfactorily specified using an ERM

78

and a DFM. Since the translation of ERMs into an OML specification was discussed in the previous
section, the translation of the Library problem’s ERM into OML will not be discussed here. A
complete description of the problem, its informal analysis, and the OML specification are provided

in Appendix E.

This section describes the translation of a DFM into an OML specification. Data Flow
Models typically do not provide any explicit notion of control structure. Without an explicit
control structure, it is only possible to translate the DFM into a group of loosely coupled process
objects with no particular execution sequence. That is, the individual processes are executable but
there is no process sequencing information. Therefore, a function must be added to the REFINE
executable specification which sequences and executes the processes. In the absence of control flow
and control process information, the translation software will need to insert control information
in the executable specification that locates a set of possible next processes and allows the user to
select from this set. In the Library problem, no control sequencing was specified and therefore a
group of loosely coupled objects will be created by the translation. A controlling function will be
added to the automatically generated REFINE specification to sequence the processes that were

defined in the specification and provide user interaction.

Appendix E contains all of the data flow diagrams necessary for analyzing this problem. The
Process objects should be translated into OMI, first; however, not all processes identified in the
DFDs will become process objects in OML. Only the leaf node processes need to be translated in
OML. The leaf node processes are the processes at the lowest level of each numbered bubble in
Figure 11. For example, processes 1, 2, and 3 can be further leveled into more detailed data flow
diagrams and therefore are not represented into OML. However, if a process at this level existed in
its most primitive stage (i.e. it could not be decomposed any further), then it would be translated
into OML. Continuing with this example, the decomposition of process 2 is shown in Figure 12.

Process 2 has been broken down into 11 distinct subprocesses. These processes are at their lowest

79

level of decomposition and each of these processes must be represented in the OML specification.

User-Name-1

Transaction-1

Book-List*

* Actuslly display statements
in process behavior objects

Figure 11. Library Problem Level 0 Data Flow Diagram

Using CHECK-OUT-BOOK (process 2.4) as an example, a process would be represented in OML as:

CHECK-OUT-BOOK instance-of Process

The declaration of the process object is not complete by itself. The behavior of the process
now needs to be defined. The activity associated with the CHECK-OUT-BOOK process is captured

in the CHECKING-BOOK-0UT behavior object.

80

* Actually display statements
in process behavior objects

Unlabelled data flows represent

searches by the process into
the store.

Updated-Book-2
(Book)
BOOKS

Updated-Book-1
(Book)

2.1
Remove
User
Updated-Name-3
{User)
USERS

Updated-Name-4
(User)

Updated-Book-3
(Book)

USERS
Updated-Name-2

Updated-Name-1
{User)

Updatsd-Book-4
(Book)

25

Return

21
Determine

Staft
Transaction

BOOKS

Book-List

Figure 12. Library Problem Level 1 Data Flow Diagram

81

CHECKING-BOOK-OUT instance-of Behavior
exists (book) (book in BOOKS &
book.book-id = TRANSACTION-5.Book-Id &
book.status = available) &
exists (user) (user in USERS &
user.user-name = TRANSACTION-5.Borrower-Name &
user.book-count < 10)
-->
UPDATED-BOOK-3 := getitem(book | book in BOOKS &
book.book-id = TRANSACTION-5.Book-id) &
UPDATED-BOOK-3.status := checked-out &
UPDATED-BOOK-3.current-borrower := TRANSACTION-5.Borrower-Name &
UPDATED-NAME-1 := getitem(user | user in USERS &
user.user-name = TRANSACTION-5.Borrower-Name) &
UPDATED-NAME-1.book-count := UPDATED-NAME-1.book-count + 1
event none

In this case, a Pre-Post-Condition statement was used to model the intended behavior. Notice the
pre-condition and the post-condition are separated by the “— -> symbol which indicates that if all
the pre-condition requirements are true, then the post-condition statements should be made true.
Additionally, the individual requirements of the pre-condition and post-condition are separated by
ampersands. All pre-condition requirements are boolean expressions and all post-condition require-
ments are statements. Boolean expressions can be expressed by traditional predicate operators (e.g.
<, >, = ...) or by the set operators, in, forall, and ezists, which test if an elemen’(s) is present
in a set of elements. Postcondition statements can be either assignment statements, such as used
above, or function calls. We found it necessary to provide a small set of built-in primitive object
operations to supplement the user-defined processes. The built-in functions allow the user to cre-
ate, destroy, and display objects. Example uses of these functions can be found in the complete
OML specification for the Library problem (see Appendix E). Whatever is inside the parenthesis
must be an existing entity or set of entities. Further, it is also important to note that expressions
and statements in a process behavior refer to a flow object’s attributes (flow-name.attribute-name).
Preconditions test the current status of a flow’s attributes, while post-conditions assign values to a

flow’s attributes.

82

Processes are also characterized by the data they operate on and the data they output.
Therefore, Flow objects and Store objects must be created to represent the incoming and outgoing
data. The Library problem contains a data store for all valid users and another data store for all
valid books. The following is a representation of the stores in OML:

USERS instance-of Store
nature : sct
content : User

BOOKS instance-of Store

nature : set
content : Book

The nature attribute indicates whether the ordering of the objects in the store is important. If
ordering is important, then the nature attribute should be assigned the value sequence. The content

attribute specifies the type of data the store contains. This value should be an entity class-name.

The CHECK-OUT-BOOK process is associated with several flows. One of the flows carries data
from the CHECK-OUT-BOOK process to the data store, BOOKS. This flow represents the process

object updating the BOOKS data store by sending it a Book object. This Hlow is defined as follows:

UPDATED-BOOK-3 instance-of Flow
flow-link : proc-store
flow-data : Book
The flow-link indicates the two types of objects that the flow object connects together. In this
case, the data flows from a process to a store. The flow-data attribute characterizes the type of

data that is carried by the flow object. The actual Book object tha, UPDATED-BOOK-3 carries is

not determined until the REFINE specification is executed.

Once all of the processes, behaviors, flows, and stores have been defined, the last requirement
is that they be associated together in a Relation-Table. This is accomplished in much the same
manner as discussed for the Heater problem. Similar to specifying the relationship between a state
and its behavior, processes are associated with behavior objects using the built-in ICO relationship.

Additionally, flow objects are used to associate processes, stores, and entities.

83

4.6 Summary

The Object Modeling Language provides an intermediate format for translating an informal
specification into an executable software specification. This chapter has presented the rationale
for creating OML, the goals in defining OML’s capabilities, the syntax and semantics of OML, an
evaluation of OML’s capabilities, and two test cases to informally validate the effectiveness of OML

as a specification language.

The benefit of OML is clear. A problem specified in OML is now in a format which can
be quickly and automatically translated into an executable specification which can be used to
determine if the system requirements were properly captured in the specification. This capability
enables the user to quickly uncover potential problems and ambiguities in the specification at a

very early stage in the software development lifecycle which will save both time and money.

The next chapter will conclude our research by defining the process for converting OML

specifications into executable REFINE source code.

84

V. FEzecutable OML Specifications
5.1 Introduction

The objective of this portion of our research was to develop and implement a process for
executing an OML specification. By observing the behavior of a specification, the specifier can
determine if his specification accurately captures his requirements. As mentioned in Chapter III
(see Figure 4), there are at least two ways to accomplish this objective. One way is to develop
a translation process which converts an OML specification into REFINE source code that can be
compiled and executed. The second method is to directly simulate the behavior of an OML specifi-
cation. The first method is similar to the translation of a source program into an executable form,
such as the compilation of an Ada program into executable object code. The second method is a
direct simulation which executes the source program based on the internal representation of the
parsed program. This method operates on an entire OML specification unit (i.e., process object,
state object, behavior object, etc.), but does not explicitly perform a translation. The only output

produced is the result of the behavior specified by the OML specification.

To simplify the process of translating OML specifications into an executable form, we trans-
lated the textual OML specification into an intermediate form — an Abstract Syntax Tree (AST).
Since we chose to develop our software in the REFINE environment, we used DIALECT, REFINE’s
compiler-building tool, to construct a compiler that produces an AST. REFINE’s environment con-
tains many features for examining and manipulating ASTs. These features allowed us to more
quickly and easily develop the translation software for generating an executable specification. RE-
FINE’s AST is useful to both behavior demonstration methods: compilable source code and simu-
lation. The AST assists in the translation by allowing us to group like data items together and to
associate objects that are loosely coupled in the OML specification. It also allows the translation
software to work with information that resides in several different sections of the specification rather

than requiring information to be operated on sequentially.

85

OML.
Specification

Parses
OML

T TN
N

oML
Translation
Executive
Reads
AST

Parser
Produces

e

Represents
Info in an AST

Simutation
Executive

REFINE
Specification

Complie
& Load

Executable
Specification

Produces

Specification
Outputs

Figure 13. Steps Required for Translation versus Simulation

Figure 13 compares the steps required to prepare an OML specification for simulation versus

the steps required to generate an executable REFINE specification.

1. The round-cornered rectangles depict executable programs that operate on other files to

construct new products:

o The OML Parser transforms the textual OML specification into an Abstract Syntax Tree
(AST).
e The Translation Executive, or translation software, operates on the AST and produces a

file that contains a compilable REFINE program that represents the parsed specification.

86

e The Simulation Executive, yet to be developed, is a program that traverses the AST

and displays outputs on the terminal as though the specification were executing.

2. The rectangles depict files that are processed by the executable programs:

e The OML Specification is produced by an elicitation tool (recommended method) or
manually (until the elicitation tool is developed) and represents a system that has been

analyzed and decomposed using informal software modeling techniques.
e The REFINE Specification is an automatically generated, compilable REFINE program.

3. The ovals depict the machine representation of files that exist as objects in the REFINE

environment (object-base).

e The Abstract Syntax Tree (AST) is produced when an OML specification file is parsed

into the REFINE environment.

» The Executable Specification is generated when the REFINE Specification is compiled

and loaded into the REFINE environment.

Due to time constraints, we focused on the translation of OML specifications into executable REFINE
programs. As part of a previous project, we wrote a compiler that parses an Ada program into a
REFINE AST and translates the information in the AST into REFINE source code. The result was a
REFINE program that displayed behavior identical to the Ada program. Because we understood how
to perform the translation from OML to REFINE, we were able to focus on other problems associated
with the representation and interaction of informal model objects needed to develop an executable
specification. Also, because our goal was to create an executable specification, it appeared more
straightforward to associate informal model objects with REFINE program components than to
pursue the more abstract approach of behavior simulation directly from the AST. This aspect is
left for future exploration. The simulation approach may be more appropriate as the size of the

specification grows larger. Once a change or correction is made to the specification, the specification

87

would only require re-parsing to simulate behavior, rather than re-parsing, re-translation, and re-

compilation as is needed to generate executable REFINE code.

Several steps are required to transform an OML specification into an executable form: that can
be used to verify correct behavior. All of these steps are performed by the translation software which
the user can initiate by entering one command and each step is outlined below. (See Appendix F

for a more detailed explanation of the steps involved in the automatic translation.)

1. First, OML specification is converted into an intermediate form, a REFINE AST, by parsing
the specification through a compiler generated using DIALECT. Section 5.2 contains a detailed

discussion of how this was done.

2. Second, the information in the AST is translated into a REFINE program that can be compiled

and executed.

3. Last, the specification is compiled and loaded into REFINE’s environment and the user is
prompted to execute the specification to demonstrate its behavior. Testing the specification
is not entirely automatic. It requires the user to select desired paths through the executable

specification to simulate external inputs to the modeled system.

This chapter discusses compiler generation using DIALECT, the generation of REFINE source
code from the AST, the process required to generate executable specifications from state-based
models and process-based models, and the REFINE construct that each object in the Unified Ab-

stract Model (UAM) is translated into.

5.2 OML Compiler Generation

A compiler was needed to transform textual OML specifications into an intermediate form
suitable for automated translation. Using the Backus-Naur Format description of OML’s grammar
in Appendix A, we generated a compiler using DIALECT, REFINE’s formal language manipulation

tool. In order to build a compiler, DIALECT requires that a domain model and a grammar be

88

constructed. The domain model describes the types of objects that make up OML. (Objects can be
thought of as nodes on a directed graph.) These objects are modeled as classes and subclasses of
one another to form an “is a” hierarchy. Using this hierarchy, the grammar can replace a “parent”
type with one of its subtypes when parsing an input stream. Objects can also be paired together
using REFINE maps. Object attributes are created by pairing one object with another object.
Defining an object’s attributes is equivalent to building an “is composed of” relationship. (Maps
equate to the arcs in a directed graph.) A grammar defines for DIALECT how the objects in the
domain model are composed into a language. That is, the grammar identifies how objects and
punctuation can be grouped together into sentences. As the compiler parses a file, it identifies
objects in the domain, and builds a parse tree based on the maps defined in the domain model and
the rules (productions) contained in the grammar. Diagrams of the OML domain model are found
in Appendix C. We used the standard lexical analyzer provided with DIALECT to parse the input.

OML did not require us to customize the parser or build our own AST-building routines.

We felt that incorporating an Ada-based Program Design Language (PDL) into OML would
give the specifier more flexibility in describing behaviors. A compiler for a subset of Ada that could
serve as a PDL standard was written as a compiler class project. In addition to converting an Ada
program into an AST, the Ada PDL compiler also performs semantic checking. However, merging
one grammar into another was not a simple task. The OML and Ada PDL domain models and
grammars were compared to determine what common structures had to be developed. Common
structures were required because both Ada PDL and OML use the same mathematical expressions.
DiALECT has a mechanism for disambiguating a grammar by specifying the precedence of operators
in expressions. However, the precedence definition can only apply to one REFINE object class.
Therefore, all the mathematical expressions for both Ada PDL and OML had to be represented
with a single parent object class. All other objects in the domain models were made unique to

either Ada PDL or OML. The Ada PDL was written to be stand-alone. OML was then structured

89

to inherit all the grammar productions (rules) from the Ada PDL grammar !. Care had to be taken
when assigning names to objects and maps in both the Ada PDL and the OML domain models to
ensure that nothing was redefined or omitted. If Ada PDL and OML both have an object class
or a map in their domain models named X, REFINE will use the definition of X that is compiled
and loaded last. That is, it will over-write any existing definition with the same name. Should this
occur in the definition of a map, the “is composed of” relationship created could be quite different
from the one that should have been made. Similarly, if like-named objects have been placed in both
the Ada PDL and OML domain models, productions for these objects should only be defined in
one'of the languages’ grammar. If Ada PDL and OML both define a production (a grammar rule)
for the same object, only OML’s production will be used. This is because DIALECT will only copy

productions from an inherited grammar (Ada PDL) that do not exist in the inheriting grammar

(OML).

The two grammars were successfully merged, but there was insufficient time remaining to
update the Ada PDL semantic-checking and translation software to reflect the extensive changes
made to the names in the Ada PDL domain model. Semantic checks need to be created to ensure
that attribute names are properly converted to the correct REFINE syntactic form, and that branch-
ing (outside of the specified behavior) is prohibited. Further research is required to determine how
constraints are applicable to behaviors specified using PDL, and if appropriate, how they should be
applied. A detailed discussion of constraints can be found in Section 5.4.10. The domain models
and grammars can be found in Appendix B, Sections B.1 and B.2, respectively. The OML domain

model and grammar that do not incorporate Ada PDL are located in Appendix A, Section A.3 and

!This may seem odd at first, because it implies that Ada PDL is at a higher level than OML. But we did so
because Ada PDL contains a more extensive description of expression objects. DIALECT was designed to allow
multiple dialects of a language. The most general case of the language is created with its own grammar. Each
variant of this language can be created by building a grammar that has productions expressing only the variations
needed for the dialect and inheriting the rest of the language’s productions from the general case. The inherits-from
command causes DIALECT to copy only the productions from the inherited grammar with left-hand-sides not already
defined in the inheriting grammar. The variant language’s grammar must also include any precedences, start-classes,
or other information that is necessary for the grammar, because these things are not inherited from the general case.
Because OML objects were the highest level objects in our model, and because lower level expression objects were
shared to allow the precedence rules to disambiguate both the Ada PDL and OML grammars, Ada PDL was made
the generalized case.

90

Section A .4, respectively. For further information on using DIALECT to generate a compiler, see

(21).

5.8 Ezecutable Specification Methodology

Before describing how each OML object is translated into REFINE, we will describe the
methodology used to compose the OML objects into an executable REFINE specification, that is, a
REFINE program. This should give the reader a better understanding of how all the OML objects
interact with each other to produce an executable specification. Also, this should allow the reader

to understand why each object was translated in the chosen manner.

OML specifications are translated into a group of REFINE data definitions and functions that
represent the objects in the specification. These objects, however, do not create an executable
specification, because no top-level control module is specified in a DFM or an STM. Therefore,
the translation software also inserts one of two different controlling functions into the executable
specification. The controlling function for state-based models directs the executable specification’s
program flow based on events that occur. The controlling function for process-based models selects
the next process to execute, based on which data flow objects have valid information in them. The
translation software determines which function to insert into the executable specification based on
the types of objects in the OML specification. Currently, a controlling function does not exist for
specifications that contain both process- and state-based models simultaneously. The integration of
both of these models into the same executable specification needs to be developed in future research.
Regardless of which controlling function is added, the controlling function is named “sim” and the
specification is executed by typing “(sim)” at the REFINE prompt. First, the execution of state-

based models will be discussed.

5.8.1 State-Based Model Ezecution. State-based models are typically composed of entity

objects, state objects, event objects, and behavior objects (as well as relation tables). As alluded to

91

in Table 4, state and behavior objects are converted into functions, entities are converted into object
classes and instances, and events are used to develop the sequencing of actions in the executable

specification. A controlling function is then added to sequence the execution of the state and

OML Object REFINE Construct
Entity Class Object Class and Variable Maps
Entity Instance Object Class and Object Instance
Relationship Not currently used or translated
State Function
External Event Symbols
Internal Event Used during behavior translation to locate the

next state, but not directly translated

Behavior Function
Process Function
Flow Object Instance
Store Variable (Representing a Set of Objects)
Relation Table Used during translation to associate related ob-

Jjects, pbut not directly translated

Table 4. Mapping OML Objects into REFINE Executable

behavior functions to produce an executable specification. Figure 14 illustrates the flow of control

as “sim” executes.

Upon translation, the name of the system’s initial state is written into the controlling function.
The initial state is assumed to be the first state declared in the OML specification. The controlling
function first makes a call to the initial state function. The initial state function, as well as all state

functions, perform the following operations:

e It tests the system’s current state-space against the state-space required for that state as

defined in the OML specification.

92

Controlling Funcii

1. Execute initial state function
< retums tuple>

2. i valid state then
a) Display list of external events
<user selects event>

b) Execute behavior associated
with the event

¢) Execute behavior(s) associated
with current state
<retumns next state name>

d) Execute function associated
with next state

e) Return to step 2
3. Kfinvalid state then

Display and error message and
the current state space values

Returns

Siate Functions
1. Test the state space of the system
against the required state space.

2. if valid then
Return tuple =
«<valid, [Ext Events), [Event Beh], [St-Beh]>

3. H invalid then
Return tuple = <invahd, (1.{1.[1>

Retums

.

Behavior Functi

1. Execute all rules whose preconditons
are satisfied.

2. Iif event field has a value specified then
retum the name of the next state
associated with that intemal event.
Return = next state name

Displays System Information

Figure 14. State Based Model Execution Methodology

o If the state-space is valid, the function returns a tuple of information to the controlling

function. The tuple contains:

a valid state-space flag,

— a sequence of external events that can occur during that state,

a sequence of behaviors corresponding to the sequence of events, and

— a sequence of behaviors that characterize the current state.

This tuple is used by the controlling function to direct the sequencing of actions.

93

o If the state-space is invalid, the tuple is assigned an invalid flag and three empty sequences,

and the tuple is returned to the controlling function.

If the tuple returned from the state function indicates the state-space is valid, the controlling
function next displays a list of external events that the user can choose from. By selecting an
external event, the executable specification is able to simulate the introduction of external events
into the system. Currently, handling multiple events and ranking events by priority is not supported,
but it could be added with little difficulty. The behavior associated with the selected event is then

executed, which modifies the value of specified objects.

The controlling function next executes the behavior functions associated with the current
state. These behaviors perform the same functions as external event behaviors; however, these
behavior objects return the name of the next state. If the event field of the behavior object is
specified, then the behavior function returns the name of the next state to the controlling function.
The translation software uses the event name to search through the relation table to find the name of
the next state associated with the event. As a rule, external event behaviors cannot provide a value
in the event field since they only cause changes to state-space values. Therefore, no information is
returned from an event behavior function. The name of the next state is used to restart the same

cycle of events described above.

If at any time the system enters an invalid state, the executable specification lists the current
values of each object in the system and prompts the user to compare those values against the values
required for that state by the OML specification. This is very helpful in uncovering inconsistencies

and incompleteness in the user’s informal specification.

5.3.2 Process-Based Model Ezecution. Automatically generating an executable specifica-
tion from process-oriented models proved to be more difficult than state-based models. The two
main reasons for this were the representation of flow information and the lack of control sequencing

information. The first problem was how to represent data flows in REFINE. We needed a naming

94

convention to allow us to associate specific data on a flow with the data items manipulated by a
process’ behavior and the data items contained in a store. We had two choices: to model the flows
implicitly by passing parameters between functions or to model them explicitly by declaring each
flow as a global variable. We chose to implement flows as global variables. This provided a fixed
set of names for the behaviors to reference and eliminated the need to parameterize the function
calls from processes to their respective behaviors. Further discussion of the pros and cons of these
two options is provided in Section 5.4.7. The second difficulty encountered was determining how to
develop an executable specification from an OML specification that does not contain any control
flow information. Lack of control information requires increased user interaction with the simula-
tion software. This discussion does not address how control process and control flows should be
integrated into the executable specification. This functionality must be addressed in future research

to make the translation software more robust.

Process models (DFMs) represented in OML are composed of process, flow, store, entity,
behavior (describing the process’ actions), and relation table objects. Table 4, page 92, defined how
each of these types of objects are represented in the executable specification. A controlling function
is added during translation to compose these objects into an executable specification. Figure 15
illustrates the flow of control during execution. The controlling function begins by displaying a list
of processes to the user. The user selects one of these processes as the initial process which the
controller executes. Process objects are translated to perform two operations: Check to see if all
its internal in-flows are satisfied, or perform transformations on its in-flows and generate out-flows.
The controlling function passes a parameter (either “check” or “execute”) to the process function

to indicate which operation the process function should perform.

If the controlling function selects “check”, the process determines if all the in-flows from

internal sources have been provided to the process. If any of them are not defined, then the

95

Calls

w (Check or Execute?) h
- ™
Controlling Function 1. If controlling function is ‘checking’ process
a. Test if all inflows from Intemal sources
1. Dl:slez‘cmllst of valid initial processes to are defined.
<user selects a process to execute> b. Return tuple = <valid or invalid, []>.
2. jx.:‘c:,‘:::u::: :h osen process function 2. It controlling function is ‘executing’ process
valid ¢ ss flag, [next processes]> a. Check all inflows from external sources
3. 'Check’ each next process to determine
if its intema! inflows are valid. b. Prompt user to supply all undefined
extemal inflows
4. Display li f valid next proce t
“:xeycu:o v ne seesto c. Execute the behavior(s) associated
<user selects one> with the current proceses
5. Qo to step 2 d. Undefine the inflows consumed by proces
N / K e. Retum tuple = <valid, [next-proceeses]> J
Display User \
Information Retums
Retums Tuple Calls Next Process
Name
T ™
Behavior Functions
1. Execute all rules whose preconditons
are satisfied.

2. 1t event field has a value specified then
retum the name of the next process
assoclated with that intemal event.
Retum = next process name

Note: the intemal event indicates
control flow

N S/

Figure 15. Process Oriented Model Execution Methodology

process will not have all the information it requires to execute and an invalid flag is returned to

the controlling function. This indicates the process is not eligible for execution?.

If the controlling function selects “execute”, then the following operations are performed:

o If any required in-flow from an external source is not available, the process function prompts

the user to enter the required data.

2This may seem to constitute a restrictive user interface. Our goal was to a display a limited set of next available
processes for the user to select from during execution of the specification. We did this by locating the processes
whose internal in-flows were valid. This resulted in a specification that executes in the order that the flow-data is
generated. The execution would be more flexible if any process could be selected for execution at any time. If a
process does not have all its in-flows satisfied (whether internal or external), then the software would prompt the
user for the information. This feature would require the process-based controlling function to be restructured in
future research.

96

e Once all in-flows are satisfied, the behavior function associated with the process is executed.
Behavior functions perform the same operations as mentioned in the state-based model exe-
cution, except that process behaviors cannot cause any type of branching or calling to another

behavior function unless control information is specified.

o After the in-flows to the process have been consumed, the data carried by the in-flows becomes

un-defined.

o The process returns a tuple containing a valid process flag and either the name of the next
process to execute (if control information is provided in the process’ behavior) or a list of

potential processes to execute based on the current state of the simulation.

The controlling function then repeats the same cycle of events over again by displaying the
list of processes that can be executed next. The next several sections provide details on how each

OML object is converted into REFINE or used by the translation software.

5.4 Translation

Similar to the tasks we performed when developing the UAM, we needed to evaluate the major
components of an executable program and ensure that the translation software built an executable
specification that correctly represented the OML specification. To develop an executable specifi-
cation, we needed to determine three major groups of information from the AST representation of

the OML specification:
o the data architecture (data that needs to be manipulated),
o the behavioral architecture (manipulations to perform on the data), and

e the control architecture (the order in which manipulations occur).

The data architecture is determined from the OML entities, stores, and flows. These are passive

objects that describe the data or objects the specification works with. The behavioral architecture

97

is described by behaviors, processes, and states. These objects specify the operations that must
be performed on the data. The control architecture is derived by the translation software from
information found in events and flows. The translation software adds sequencing information to
each state and process that is used by a controlling function to order the execution of state and
process functions during the simulation. Depending on whether the OML specification contains
state-object descriptions or process-object descriptions, one of two different controlling functions are
added into the executabie REFINE specification. Both controlling functions require user interaction
to direct certain steps during the execution of the specification. That is, a state-based model
requires the user to select the next external event from a set of external events to cause a state-
space change. Similarly, process-oriented models require the user to select the process to execute

next.

Table 4, page 92, summarized the general mapping of OML objects into executable REFINE
code. These REFINE objects and functions are composed together with a controlling function for

either a state-based or transaction-oriented model.

The correctness of the translation process was informally validated through the execution
of the two test cases: The Home Heater and the Library System problems. The results of their
execution clearly modeled the intended behavior of these systems. While it is not appropriate to
conclude that the translation process is totally correct, we have achieved a measure of success. Both
problems were successfully translated from their OML specifications into their associated executable
specifications. Testing showed that the executable specifications actually captured the behavior as
specified by their OML specifications. Care was taken to form general behavior translation routines
so that the translation software was not biased by our knowledge of the expected behaviors of
the two sample problems. In each case, we intentionally injected a controlling function that was
not present in the OML specification. This function directs the execution of the specification

based on selections made by the user. Therefore, based on the successful generation of executable

98

specifications for these two problems, we can say that our translation process is correct for the two
instances in which it was tested. Our translation software did not convert constraints, relationship
objects, and Program Design Language behavior objects into the executable specification. In this
sense, the translation software is not complete. Hence, it is not fully validated. The process has been
validated, however, for entity objects, event objects, Decision-Table and Pre- and Post-Condition
behavior objects, flow objects, store objects, state objects, and process objects. The inclusion of
constraints and relationship objects in the translation will impact the behavior of the executable

specification requiring the translation to be re-validated.

OML can also support a more formal proof of correctness of the translation process. Two other
methods can be employed to perform a more extensive validation of the translation process. Vali-
dation can be performed by establishing an extensive set of test cases to test the translation’s cor-
rectness and completeness. Because of OML’s basis in first-order predicate logic, theorem-proving
is another validation technique that can be used. Future research will address these important

issues.

The details of each object’s translation are discusse in the following sections.

5.4.1 [Entities. 'The Object Modeling Language allows the definition of both entity class
objects and entity instance objects in an OML specification. Both of these OML constructs are

used to define the data architecture of the system.

In the first case, entity classes are translated into their REFINE equivalent: object classes.
Additionally, the attributes associated with these entity class objects are translated into REFINE at-
tributes by declaring a REFINE variable that maps the object class to the data type of the attribute.
For example, consider the following entity class definition from the Home Heater specification (see

Appendix D):

99

VALVE class-of entity
type : external
parts
status :symbol range {open, closed}

This entity class definition gets translated into the following REFINE constructs:

var VALVE : object-class subtype-of HOME-HEATER
var VALVE-STATUS : map (VALVE, symbol) = {||}

The mapping of entity class objects into REFINE is relatively straightforward; however, there
are a few translation issues that need further explanation. Every entity class object has a required
type attribute that declares whether the entity is external or internal to the systuin. This type
attribute is not directly translated into REFINE code but is used by the translation software to

determine if a data flow comes from an internal or external source.

The REFINE attribute names are a concatenation of the object class name and the entity
attribute name. This convention was adopted to ensure that all attributes defined in the translated
code have unique names. If the attribute names are not unique, then only the last attribute

compiled by REFINE would be defined. All previous attribute definitions would be overwritten.

The VALVE object-class is a subtype-of HOME-HEATER. The name of the top level REFINE
object in any translated file is defined by the name of the specification. That is, the name following
the keyword specification at the top of the OML file becomes the top level object in the REFINE
executable specification. Therefore, all object-classes in the translated file are defined to be subtypes
of the top level object. This feature provides a convenient method to locate and manipulate all the

data objects associated with any given REFINE specification.

The range of legal attribute values is currently not translated into REFINE. Currently, this
information is not used but should be used to do static semantic checking on the values assigned
to the object attribute. Due to time constraints, code for semantic checking was not developed.
At least two options exist for performing the semantic checking. First, the semantic checking can

be performed by the elicitation tool that generates OML specifications to ensure that only valid

100

OML specifications are provided to the translation software. The second option is to implement

the semantic checking as part of the translation process. Future research will address these issues.

The second type of OML entity objects are entity instances. Two types of entity instance

objects can be defined:

1. Instances of a user-defined class. The translation of instances of a user-defined class is a

three step process:

(a) Declare a variable of the object class type.

(b) Make an object of the object class type and assign it to the declared variable. This is

accomplished by using REFINE’s make-object command.

(c) Define the attributes of the declared variable. This is done by using the set-attrs com-

mand.

All three steps can be included in one REFINE statement as shown below. The OIL-VALVE

entity instance from the Home Heater gets translated into the following REFINE code:

var OIL-VALVE : VALVE =
set-attrs(make-objectC'VALVE),
‘name, "*OIL-VALVE,
"VALVE-STATUS, ’CLOSED)

The name attribute of the object is a REFINE built-in attribute and is needed to use several
of REFINE’s object manipulation functions. The name assigned to each object also must
be unique to other object names as well as unique from the name of the object’s variable
declaration. Therefore, we defined each object’s name attribute to be the variable name
preceded by an asterisk (*). This allows REFINE to distinguish between the actual object and

the name of the variable declaration.

2. Instances of OML’s built-in entity class. This translation process is a combination of defining
an entity class and defining its instance. First, an object class is defined for each instance
of the built-in entity class, then an object is created to represent the entity instance. The

following is an example of this translation:

101

As defined in the OML specification:
MASTER-SWITCH instance-of entity
type : external

parts
status : symbol range on, off init-val off

The translated REFINE source code consists of the class declaration:
var MASTER-SWITCH-ENTITY : object-class subtype-of HOME-HEATER

var MASTER-SWITCH-ENTITY-STATUS:
map(MASTER-SWITCH-ENTITY, symbol) = {|[}

followed by its instance declaration:

var MASTER-SWITCH : MASTER-SWITCH-ENTITY =
set-attrs(make-objectCMASTER-SWITCH-ENTITY),
’name, *MASTER-SWITCH,
"MASTER-SWITCH-ENTITY-STATUS, 'OFF)

To keep the object class name unique, we chose to define the object class name as the con-

catenation of the entity instance name with the word ENTITY.

5.4.2 Relationships. An Entity Relationship Model (ERM) illustrates the relationships
between entities in a system. OML allows the creation of three types of Association objects: Re-
lationships, Events, and Flows (see page 46). Relationship objects model the static relationships
between entities found in ERMs. We created these OML objects under the assumption that all
the objects contained in the informal models would be useful in OML. However, when developing
our translation software to create an executable specification, we did not find a need for Relation-
ship object information®. We were able to develop what we believe is a generalized translation
process that does not use the information provided by Relationship objects. This is not to say
that Relationship objects are useless to OML. The two problems we used to test our system, the
Home Heater and Library problems, are limited in size and complexity. The implementation of
more difficult modeling problems in OML may display the applicability of Relationship objects for

generating an executable specification. It is not surprising that Relationship objects are not used in

3This lack of usefulness was not the case with other association objects, or the built-in ICO relationship that occurs
in the Relation Table. The dynamic nature of Flows and Events makes this information indispensable in creating an
executable specification. The Relation Table lists all the user-defined Associations and the compositions (ICOs) of
State and Process objects with their Behavior objects. The table was also used extensively in the translation process
to locate objects that originally were referential attributes in the original OML architecture (see page 41).

102

generating an executable (dynamic) specification. Relationship objects represent the relationships
in ERMs. These relationships describe the data structure of a system. Developing an executable
specification requires the modeling of the dynamic relationships and behavior of a system. REFINE
provides object definition and management functions. That is, we did not develop our own data
base to store and catalog objects. If we had, we may have found Relationship objects useful in
structuring the data base. For the present time, it appears reasonable that Relationship objects do

not affect the generation of an executable specification.

As a point for future research, Relationship objects may be useful for defining constraints
on the operations that one class of objects may perform on another class of objects. For example,
Figure 25, page 276, shows the ERM for the Library problem. A staff user can add/remove a
Book from the Library. If the Add relationship object was associated in the relation table with
the Adding Book behavior, then the Add relationship object could be used to constrain who is
allowed to add a book to the Library. In our analysis of the Library problem, the constraint that
only a staff user can add a book to the library was built into the pre-condition of the Adding Book
behavior object by using the in set-expression operator to see if the user was in the set of staff

users.

5.4.8 States. The translation software converts each OML State object into a REFINE func-

tion that performs the operations as described in Section 5.3.1, illustrated in Figure 14 (page 93).

In order to generate a REFINE function that accomplishes these tasks, the translation software

performs the following actions for each state object:

e By gathering information from the relation table, the translation software creates a sequence
of external event names applicable to the current state. It declares a local variable in the

REFINE state function, and assigns the event sequence to the variable.

103

o At the same time it creates a sequence of behaviors that correspond with the external event

sequence and assigns this sequence to another local variable in the REFINE state function.

o It generates a sequence of behavior object names associated with the current state and assigns

that sequence to a third local variable in the REFINE state function.

e It uses the state-space attribute defined for each state to create an if-then statement in the

function to test the system’s state-space and return the appropriate tuple as mentioned above.

Two notable problems surfaced during this translation. First, the state-space attribute ref-
erences needed to be translated from “dot” notation to a form acceptable to REFINE. That is,
object attributes are written in the form of object-name.attribute-name. When referencing object
attributes, state-space constraints model the arguments of their expressions using “dot” notation.
This presents two problems. First, this is not the same notation that REFINE requires. REFINE
refers to an object’s attribute as attribule-name(object-name). Second, the translation software
converts each object’s attribute name into a unique attribute name. As a result, when converting
state-space constraints, the translation software must find the unique name of the attribute in the
attribute table (created when Entity objects were converted into REFINE, see Section 5.4.1), and
also correctly format the syntax for finding the attribute value. The second problem deals with
the semantic checking of the state-space attribute. The state-space attribute defines the required
values of all object attributes important to that state. A semantic check must be added to verify
that the values of the attributes, required by the state-space attribute, are within the legal range
of values specified by the entity object. This semantic checking can be performed by the elicitation
tool that generates the OML specification or by future modifications to the translation software

depending on whether static or dynamic constraint checking is desired.

5.4.4 Events. Events are critical to developing the contro] architecture of an executable
specification. OML allows the creation of both internal and external events, each of which is treated

differently by the translation software.

104

Internal events in OML are used to link one state of the system to another state and do not
possess any behavior. They are referenced in the event field of Behavior object rules to indicate
which state the system should transition to next when the behavior rule is executed. Therefore,
whenever an internal event object is referenced in a behavior object, the translation software uses
the relation table to find the name of the next state associated with that event. The discussion of

Behavior object translation will describe how the next state name is used.

External events differ from internal events in that they possess behavior which is used to
change the state-space of the system. They are not used to link two states of a system together,
but rather are used to specify a change in the values of state-space variables which in turn may allow
one or more activities to occur in the current state. (The activities of a state are specified in the
behavior object associated with the state). External events represent actions of objects that exist
externally to the system. Since these events need to come from external sources, this presented a
problem in developing an executable simulation. To satisfy this need, we added a user interaction
routine to the translated executable specification which interacts with the user each time the system
changes state. The interactive routine displays a list of external events that the user can select for
execution while in that state. Once the user selects an external event, the behavior associated with

that event is executed. The event’s behavior is responsible for changing the state-space variables.

5.4.5 Behaviors. Behavior objects perform an integral part in defining the behavioral
architecture of an executable specification. Recall that Behavior objects in OML can be defined by
Decision Tables (DT), Pre-Post Conditions (PPC), and Ada PDL. Each of these types of Behavior
objects are represented very differently in OML, therefore each requires its own unique translation
process. However, the representation of both DTs and PPCs in an executable REFINE specification
are very similar, therefore the translation software performs the same types of operations on these
objects. In both cases, each PPC rule and each column in a DT is converted in the following

manne*:

105

e the pre-conditions of the rule, or the conditions of a decision table column, are located in the

AST and translated into REFINE,
¢ the post-conditions of the rule, or the actions of the DT column are translated and
e the rule’s next event (if specified), or the column’s next-event (if specified) is translated.

However, DTs and PPCs are converted into different REFINE constructs. Each DT Behavior object
is transformed into a REFINE function that consists of one REFINE “transform” construct for
each DT rule. Similarly, each PPC behavior object is converted into a REFINE function, but
instead consists of one “if-then” construct for each pre-post-condition rule. The rationale for
translating DTs and PPCs into different REFINE constructs is provided later in this section during

the discussion of problems encountered.

PDL Behavior objects are translated into a self-contained REFINE program. The translation
code for converting Ada PDL into REFINE is provided in Appendix C. However, the PDL translation
and semantic checking code (trans-pdl.re, sem.re, and tcheck.re) must be updated to reflect the
name changes made to PDL’s domain model and grammar which were necessary to enable the PDL
and OML grammars to operate concurrently. The required modifications should be straightforward;

however, time constraints did not allow us to accomplish this task.

The REFINE functions that represent OML behaviors also contain information that helps the
controlling function order the execution of the state and behavior functions. The event information
in PPCs and DTs is optional. It allows the user to specify an internal event that will occur if that
rule or column in the behavior is executed. The translation software uses the name specified for the
event and searches the relation table to find the name of the next state associated with that event.
The name of this next state is then returned by the behavior function to the calling function. If an
event is not specified, then nothing will be returned. This indicates that user interaction will be

required for internal event selection as well as external events. State-based models should provide

106

an ever.t for each rule to link the current state of the system to the desired next state. Process

based models will only provide events if control flows are specified in the system’s DFM.

5.4.5.1 Problems Encountered. When developing the behavior translation code, the

following difficulties had to be resolved:

e When referencing object attributes, behavior rules model the arguments of their expressions
and statements using the “dot” notation. Because REFINE does not access object attributes
as object-name.atiribute-name, the names are converted to attribute-name(object-name) by
the translation software. This is accomplished using a look-up table that is created as entity

objects are translated and given unique names.

e Originally, we designed the translation software to produce one REFINE “transform” construct
for each rule. We preferred to use transform constructs since they are better suited for
specifying what as opposed to how. A REFINE transform is structured as a pre-condition
predicate and a post-condition predicate separated by a transform symbol (e.g., P — Q).
It is interpreted as meaning: if the initial state-space is P then make the final state-space Q.
It is similar to an “if-then” construct ezcept that it does not explicitly state how to attain
the final state. In that same vein. the order of execution and the manner in which the
post-conditions are satisfied is determined at run-time by the REFINE compiler. Therefore,
it is more a specification of what to accomplish as opposed to an implementation procedure.
Since the order of execution cannot be determined by the user, all post-condition statements
must be independent of each other. Unfortunately, when testing the executable Library
specification, the order in which the post-conditions were executed was important for certain
Library functions. This seemingly non-deterministic behavior resuited in a run-time error
which was a direct result of the order in which the post-conditions were executed. To resolve
this problem, we modified the conversion of PPCs to generate one “if-then” construct for each

PPC rule.

107

This problem also spurred further thought. Perhaps writing a PPC behavior specifica-
tion in OML that requires a specific order of execution is an abuse of the intent of a
pre-post-condition(22:3-159). PDL is a better choice for these kinds of behaviors. This being
the case, we submit that once PDL becomes fully integrated with OML, the translation of

PPCs into REFINE must revert back to using the transform construct.

5.4.6 Processes. Data Flow Models use processes to represent the transformation of data
or the actions performed on data in a system. A process in an informal model can be described by
the data it uses (an input flow), the data it produces (an output flow), and the activity (behavior)
of the process. The number of behaviors needed to describe the activity of a process depends on
the desired level of abstraction. DFMs provide an excellent overview of the important functional
components of a system but do not provide any details on the transformation of the data. These

are contained in the process specifications (p-specs) that accompany the models {29:68).

Similarly, OML process objects also represent data transformation functions and are trans-
lated into REFINE functions. However, OML process objects do not possess attributes to directly
model the data that they consume and produce, or their behavior. Instead, the relation table is
used to associate each process with its incoming data flows, its outgoing data flows, and its behav-
iors. The description of the transformations performed by the process are contained in its behavior

specifications.

Figure 15 (page 96) illustrates the operations that each process function in the executable
specification must perform. Each process is responsible for performing one of two different oper-
ations. The controlling function specifies which operation the process should perform by passing
a parameter to the process when it is called. One of a process’ operations is to ensure that its
internal in-flows are defined and to return a valid/invalid flag to the controlling function. The
other operation requires the process to execute its behaviors, un-define each in-flow to the process

after it has been consumed (used) by the behavior, and return a list of processes that can be exe-

108

cuted next to the controlling function. To support these operations, the translation software builds
into each process function several pieces of information. Each process maintains two sequences of
in-flow object names. One sequence contains the names of all in-flows to the process that come
from internal sources. The second sequence coutains the names of all in-flows that originate from
external sources. These sequences are used by the process function to verify that its in-flows have
valid data. If any internally generated flows do not have data in them, an invalid flag is set in the
return-tuple and the tuple is passed back to the controlling function. For a more detailed discus-
sion of the interaction between the process function and the control architecture see Section 5.3.2

(page 94).

However, before we could develop an automated process for translating OML processes into

REFINE functions that perform these operations, the following issues had to be resolved:

1. How to incorporate into the process function the flow objects that are pertinent to it,
2. How to find the processes that can be executed next,

3. How to validate the data in a flow object when the process is executed,

4. How each in-flow and out-flow will be referenced by the process’ behavior, and

5. How a process will consume the data provided by an in-flow so that the same data will not

be erroneously used again.

Data flow objects pertinent to a process are found by looking up the process name in the
relation table. The position of the process name (From-Object or To-Object) is used to deterinine
if the flow carries data into or out of the process. Additionally, the process must provide to the
controlling function the name of a process, or a list of processes, that can be executed next. The
relation table is searched to find which processes can possibly be executed next. The To-Object

name is added to the set of next processes if the current process name is in the From-Object

109

position and the Association-Object is a flow-object whose flow-link attribute is proc-proc*. For
example, consider the following portion of the relation table taken from the Library Problem (See

Appendix E):

From-Object Association-Object To-Object
DETERMINE-STAFF-TRANS TRANSACTION-3 ADD-BOOK

ADD-BOOK UPDATED-BOOK-1 BOOKS

ADD-BOOK ICO ADDING-BOOK

Table 5. Excerpt from the Library Problem Relation Table

The in-flows to a process are determined by locating all the rows in the relation table with
the process name as the To-Object. For these rows, the Association-Object represents an in-flow to
the process. Similarly, the out-flows of a process are found by locating the entries where the process
name is the From-Object and the Association-Object is not IC J. In these cases, the Association-
Object represents an out-flow. Each process “is composed of” at least one behavior and behaviors
are found by locating the entries where the process name is the From-Object and the Association-
Object s ICO. Using this approach, we can determine from the sample relation table illustrated
above that TRANSACTION-3 is an in-flow to process ADD-BOOK, UPDATED-BOOK-1 is an
out-flow from ADD-BOOK, and ADDING-BOOK is the behavior associated with ADD-BOOK.
The relation table also indicates that the ADD-BOOK process is a process that potentially can be

executed after the DETERMINE-STAFF-TRANS process.

4There are five allowable values for a flow-link: proc-proc, proc-store, proc-entity, store-proc, entity-proc. These
identify the classes of OML objects that the flow connects: proc-proc indicates data flows from a process to a process,
proc-store indicates data flows from a process to a store, and so on for process to entity, store to process, and entity
to process, respectively. Process to entity flows are not modeled in OML because entities, in this case, are external
objects. Flows to these objects represent some form of output from the system and are modeled using display
statements in the process’ behavior.

110

The way in which we modeled flow objects assisted us in resolving the remaining issues.

Once a flow object related to a process has been found, the flow’s flow-type attribute is checked to

determine

e if the OML object associated with the process (the object connected to the process by the

flow) is internal or external to the system, and
o if the associated object is a process.

The in-flows to a process are verified prior to the execution of the process’ behavior to ensure the
behavior has all its required information. Flow objects are instances of the entity-class indicated
by the flow’s flow-data attribute, and share the same name as the OML flow-object. This modeling

of flows benefited the translation of processes in the following ways:

1. It provided a way for processes to validate the contents of a flow object. Since flow objects
are modeled as objects in the executable specification, the validity of the data flow can be
determined by checking the flow’s attributes. If the flow’s attributes are undefined, then the
flow is invalid. If a flow’s attributes are defined, then the flow is valid and the process can

consume the data.

2. It provided a naming convention to allow the specifier to address flow objects and their

attributes while specifying behaviors.

3. After the data from an in-flow is consumed by the process’ behavior, the process can invalidate

the in-flow by un-defining the flow’s attributes.

This translation methodology currently places the responsibility for using correct entity and
attribute names in each process behavior with the specifier. This methodology was adopted to
sitnplify the initial process-based translation and to allow us to focus on ways to compose the

processes into an executable specification. As rcsearch in this area continues, more intelligence can

111

be added to the translation software or to the requirements elicitation tool to assist the specifier in

writing the specification.

An alternate methodology for translating process objects would be to parameterize the func-
tion calls the process function makes to its behavior functions. When the process is translated, it
would still check all the in-flow data to ensure they are valid, but these flows would also need to be
passed as parameters to the Behavior function. Additionally, the out-flow data would also have to
be received by the process from its behavior function. This methodology would result in increased
complexity in the translation of process and behavior objects. To automatically parameterize the
behavior function, the translation software would have to collect all the identifiers from the right-
hand-side of assignment statements and all the identifiers from expressions in the behavior rules,
and match their names to entity classes. These would form the in-flow parameters. A method would
also be needed to differentiate an in-flow containing data from a query to a store, which is translated
directly. The translation software would derive the out-flow parameters from the left-hand-side of
assignment statements. This leaves two remaining problems. First, parameters are passed in order.
To avoid run-time problems, the process would have to “know” the order of the in-flows expected
by the behavior function. Next, the information about the behavior must be known at the time
the process is translated. This could be established by translating the behavior first. However,
because the REFINE executable specification is produced sequentially, the information concerning
the parameter types and order would have to be added to the AST, so that the process translation
function would have access to the information later. By translating flow objects to global variables,

we eliminated the need for parameters and avoided the difficulties mentioned above.

5.4.7 Flows. The main purpose of data flows is to transfer data from one entity to another.
OML uses flows to capture data items that are produced in one object and consumed in another.

Flow-data associated with a flow has a data content, a data source type, and a data sink type

which can be modeled in the flow-object’s specification. How and when flows will be produced and

consumed is partially captured in the behavior specifications of the processes associated with the
flow. It is also partially dependent on the order of execution of the processes represented by the
DFM. Therefore, data flows in the OML specification have to be translated into a form that can
be checked for valid information and which can maintain the information until it is consumed by
another process. Flows can be modeled either implicitly or explicitly. Passing parameters between
process functions and behavior functions is equivalent to modeling flows implicitly. Alternately,
flows can be modeled explicitly as global objects (variables) that behavior functions can update as

necessary. (26:122) Three basic issues influenced our decision on how to translate flows:

1. We needed a method that would allow the translation software to identify the specific flow

object that a process’ behavior was referencing.

2. We needed to ensure the data values that were produced and placed in flows would persist
until the controlling function called the process function that would consume the data. (An
associated concern was the development of a control architecture to execute process-oriented

specifications that would not generate an excessive number of nested subprogram calls.)
3. We needed a mechanism to indicate whether the data in the flow was valid.

A flow in an informal model can be characterized by the data it carries, and by its source and
destination endpoints (the process, store, or terminator that produced it and the process, store,
or terminator that will consume it). In OML, details about exactly what data values should be
placed in the flow are contained in the behavior specifications of the process with which the flow
is associated. Exact data values will usually not be known until run-time. For this reason OML’s
flow objects have to provide a template for the data communicated between entities which can be

filled in as the specification executes.

An OML flow object is composed of a flow-data attribute and a flow-link attribute. The
flow-data attribute references an entity class. This attribute defines the type of data the flow will

carry when passing data from its source to its sink. We needed to decide which representation of

113

flows would be more suitable in REFINE: global variables in the REFINE executable specification,
or variables local to the appropriate process and behavior functions. Since OML processes “know”
what flows are associated with them, the processes can collect all of the data required to allow its
behavior to execute. Once collected, the process can verify the data is valid and pass the necessary
data to its behavior function. Using this method, the flow data can be local to a process. On the
other hand, because data can be passed from one process to several other processes (as well as
between the process and its behavior), and because only one of the receiving processes can execute
at one time, flows need to exist unaltered between one process and another. Therefore, although
data flows can be modeled either by local or global REFINE objects, global objects provide three

advantages:

1. Global objects provide a fixed group of names that can be used to reference the data produced

and consumed in behavior specifications.

2. They provide an object that can contain the information produced by one process until the

process that consumes it is executed, in essence maintaining the state of the system.

3. The validity of the data contained in global flow objects is easily determined by interrogating
the object’s attributes. If the attributes are undefined, the data is invalid. Conversely, the

data is valid if the attributes are defined.

When an OML flow is translated into the REFINE specification, the flow is instantiated as an object
of the flow-data attribute type using the REFINE make-object command. During translation, only
the name attribute is given a value. The rest are left undefined. These attributes are set when the
specification is executed by behavior objects that produce data and fill out-flows to be consumed

by another process.

The flow-link attribute identifies the two types of objects that the flow connects. The specific
objects that a flow links together are listed in the relation table. Flows can only connect certain

combinations of objects. Legal links can be formed between the following object pairs: Process-

114

Process, Process-Store, Process-Entity, Store-Process, and Entity-Process. These categories of
information are useful in the translation of processes and behaviors, but are not translated directly

into the REFINE specification. This information is used as follows:

e Process-Process flows indicate that a global flow variable needs to be instantiated to pass

information between processes.

e Process-Store flows also indicate a need for a global flow to be created. It is used to collect

data produced by a process that will be added to a store.
e Process-Entity flows represent data that is displayed.

o Storc-Process flows represent processes that retrieve information from a store. This type of
flow does not change the entity or the store object. For this reason, OML’s basic expression
capability was enhanced to provide a group of function calls to perform operations on sets

(since stores are converted into sets) and to display information.

e Entity-Process flows represent information that is input to a process from outside the system.
These flows are represented by global objects and indicate to the control architecture that

the user must be prompted to provide information to fill this flow.

5.4.8 Stores. OML stores are collections of entities designed to emulate the stores repre-
sented in Data Flow Models (DFM). Stores are defined by their nature, content, key, and order. The
nature of a store defines its ordered-ness. Set-natured stores are unordered and have no repeated el-
ements. Sequence-natured stores are ordered and may have repeating elements. Sequence-natured
stores are ordered on their key attribute, and are arranged in ascending or descending order based
on the store definition’s order attribute. The content attribute of the store identifies the class of
instances that will be placed in the store. The content of all stores must be homogeneous, consistent

with accepted DFM rules'(23:127).

115

The translation software currently does not implement all OML store features. All stores are
translated as sets regardless of the nature attribute specified. This implementation was selected

for two reasons.

1. Investigating how to develop and integrate the components of a process-oriented specification
into an executable specification was more important than investigating alternative implemen-
tations for stores. Therefore, we constrained the complexity of the translation problem by
focusing on sets. Because REFINE uses different instructions for set manipulation and se-
quence manipulation, new OML functions (in addition to union and set-diff) would need to
be added to OML to provide sequence-oriented operations. Alternatively, the existing opera-
tions could be translated in two different ways (for ordered and unordered stores), depending
on the context in which they are used. This would increase the complexity of the specifica-
tion’s behavior translation routines. As the specification’s behavior is being translated, the
translation software would have to determine the nature of the store being operated on and
select the appropriate store operation to insert. Additionally, new OML functions would have
to be provided, or automatically generated by the translation software, to insert items into

ordered stores as specified by the key attribute and ordering attribute.

2. Including the details about stores discussed above is beyond the scope of a specification tool.
The nature of a store and how it is accessed are implementation issues (29:154). The specifier
should be concerned about the existence of stores and their association with processes, but
not with the ordering of data in the store. Those factors should be considered later in the
design phase. Modeling stores in such great detail can be done, but detracts from the level
of abstraction, shifting focus from what should be done to how it should be done. It also
increases the complexity of the translation software without adding any tangible benefit from

a validation perspective.

116

Modeling the activities that deal with stores was also a challenge. Several factors required

resolution:

1. Modeling data items as REFINE objects created problems with retrieving and modifying
objects in the stores (to avoid loss of information when updating an existing object). In
REFINE, the statement (A = B) is meaningless if A and B are objects. If the intention of the
statement (A = B) is to copy all of B’s attribute information into A to make the two objects
identical, then it must be done explicitly. We devised a means for the translation software to
detect when a behavior is attempting to assign one object to another and created a library
function to copy one object’s attributes into another. The object manipulation functions (see
Appendix C, Section C.2) written by Capt Mary Anne Randour have helped immensely with

the problem.

2. When generating the REFINE executable specification, we made all the objects in the data
architecture (entities, flows, and stores) passive. Because stores have no behavior, they cannot
add or delete information passed to them in a flow. Therefore, we needed to examine how

data would be added to, deleted from, or updated in a store. Two options existed:

(a) In a DFM, a read from a store is modeled as an unlabeled arc from the store to the
process (23:127). An addition to, deletion from, or update of an element in a store is
modeled as an arc from the process to the store labeled with the type of data it carries.
One method for modeling store-related activities is to model all the flows in OML as
they appear in the DFM. The control architecture will detect flows to and from stores,
and make the appropriate changes to the stores. This option requires the development of
a library of access operations to act on a store. The translation software would need to
be able to discern, from the structure of the behaviors, which operation (add, delete, or
update) needed to be performed on the store. The translation software would then have

to decide if the store-related action involved an in-flow or ocut-flow so that the control

117

(b)

process could place the information from the store into the flow (or vice versa) at the
appropriate time. That is, if data is required to be retrieved from a store, then it is
associated with an in-flow to the process being modeled and must be retrieved prior to

the execution of the process’ behavior.

A second option is to add expressions to OML that allow a specifier to perform operations
on the stores directly. When behavior objects modify the contents of a store, flow
objects normally record this transfer. Process specifications (p-specs), a part of the
DFM, normally describe what action are performed on a store as well as describing the
behavior of the process. By adding set manipulation functions to OML, OML behavior
specifications can imitate the DFM p-spec by assigning data to its out-flows and then
using its out-flows and the set operations to modify the store. This relieves the control
architecture of the need to perform store operations. Using this scheme, flows exiting
from stores can be eliminated from the OML specification because the access to a store is
actually performed in the behavior. Flows to the store must still be modeled to provide
the translation software a variable name and association between the process and the

store.

We selected the second approach (option (b))to keep the control architecture as simple as possible.
To add an item to or delete an item from a store, the specifier uses union or set-diff. An item
can be retrieved from a store by using the getitem command and then modified by changing the
appropriate attribute values. This option also reduces the amount of information that needs to be
extracted from the AST and tabularized for use during behavior translation. These functions are
used when flows from a process to a store are being modeled. Flows must be specified in these
cases to provide a connection between the process and the store. Testing for the existence of an
item or condition in a store is accomplished using existential and universal quantification (ezists
and forall). In these cases, the flow doesn’t need to be modeled because no information is actually

moving out of or into the store.

118

5.4.9 Relation Table. Relation tables are a necessity when modeling a problem in OML.
Relation table objects are provided in OML to capture the associations between two objects in the
system. The information contained in these tables is frequently used by numerous functions in the
translation software, but relation tables are not directly converted into a REFINE construct during
the translation. Relation tables are used to support the translation of other OML objects into
REFINE and also to establish the sequencing of operations in the executable specification. Relation

tables were used to find the following information:

o During the translation of each State object:

— The set of all external events applicable to the state
— The behaviors associated with each external event
— The behaviors associated with the state

® When converting each Process object:

— The set of in-flows required for the process to execute
— The behaviors associated with the process

— The set of processes® that can be executed after the current process has completed

execution

o When translating behavior objects for state-based models, the next state to execute is deter-
mined from the relation table if an internal event name was provided as part of the behavior

object.

By localizing all object association information in one table and removing the need for ref-

erential attributes in objects, we have developed a modularized, decoupled representation of the

5These processes are identified by determining what processes are connected to the out-flows. The information
that will be entered into the out-flows during execution is enter directly by the process’ behavior. Hence, the
requirement for flow objects to have unique names. The out-flows themselves are not grouped and checked because
they will be checked as the next process’ in-flows.

119

objects in a system. From an object-oriented analysis and design point of view, this is very benefi-
cial. However, from an implementation point of view, this representation can result in a significant
degradation in the performance of the translation software. This representation requires the trans-
lation software to perform a significant amount of searching through the relation tables. As the
size of a relation table grows, so grows the searching time required to find the desired information
in the table. Therefore, a large relation table can result in a slower conversion process. A potential
solution to this problem is to create multiple tables that only hold specific information. This can be
accomplished by adding an attribute to relation table objects that indicates the type of associations
contained in that table. For example, an association-type attribute could be created which can have
the following values: flow, event, relationship, or ICO. A flow value for this attribute would indicate
the table contains associations between objects that are linked together by flow objects. A similar
meaning would apply for an event or relationship value. An ICO value would indicate the table
contains associations between an object and its behavior. Such a modification to relation table
objects should not be difficult to implement and should result in improved performance for the

translation software.

5.4.10 Constraints. The Object Modeling Language allows the specifier to express lim-
iting conditions on the objects in an OML specification. This is accomplished by instantiating
the constraints section of an OML object. OML’s design was heavily influenced by RML (1b).
Greenspan felt that a requirements language should allow the specifier to formally constraiu the
system he was describing. To do so, RML was developed with an assertion class to describe con-
straints. OML has no assertion class, but does provide expressions that can be used to describe
constraints. What additional constraints should be described in the constraints portion of each
object? Constraints currently can describe situations that must exist in terms of entities and their

values. OML may need to be expanded to allow the specifier to describe timing dependencies and

120

functional dependencies. Constraints can be applied to each OML object type in the following

manner:

Entities. Additional constraints on entities may be a duplication of the information al-
ready expressed in the entity’s range. However, constraints could possibly be used to express

interrelationships that must hold between two or more entities.

Processes, States, and Behaviors. For these objects, constraints are a means of expressing
conditions that should remain invariant throughout the execution of the function representing

the object. When and how these constraints should be used requires further investigation.

Stores. Constraints on stores could be used to limit the size or data content of a store,

although the usefulness of such constraints requires further research.

Relationships. Defining constraints on relationships appears to be meaningless. However,
the actual relationship may be useful as a type of constraint. (See Section 5.4.2 for a complete

discussion.)

Events and Relation Tables. No meaningful constraints can be proposed for events or

relation tables that are not already provided by other objects in the system.

We recommend that constraint checking be performed on all passive objects (entities, flows,

and stores) both at translation time and during execution. Additionally, constraint checking on

dynamic objects (states, processes, and behaviors) should be performed prior to, and immediately

after execution of the object function during the executable simulation. These constraints can be

implemented as if-then test conditions in each function.

Some knowledge-based code generation and synthesis tools construct executable programs

from libraries of predefined components. These systems use constraints as a means of restricting

the number of library components that can be used in composing the solution to a specified problem.

Because OML translates the specification directly, and does not assemble library components, this

121

use of constraints has a limited application. To do this at some future time would require the
definition of standardized interfaces and definitions of all REFINE specification objects so that a
library of components could be assembled. Then constraints could form heuristics that would limit
the search and matching functions that would select suitable behaviors from the library. Adding
this feature would expand the complexity of the behaviors that OML could model and reduce the
amount of work required in specifying behaviors afresh with each specification. Ultimately, domain
libraries could be developed containing the most basic building components that could be assembled

with new processes and states to define new systems.

5.5 The Value of Execuling a Specification

Executing a specification can help the specifier answer scveral important questions, such as:

e Does the specification contain any contradictions?

o Does the specification allow undesirable side effects or unspecified (but desirable) circura-

stances to exist?
o Are user interaction functions or any other “helper” routines needed?
® Are there any ambiguous requirements in the specification?

Executing the Home Heater and Library specifications helped us to locate several flaws in our
initial definitions of the two problems. The following are some of the problems that were uncovered

by executing the Home Heater specification:

e We discovered that the IDLE state was specified inconsistently. Our initial state-space def-
inition for the IDLE state required the air temperature to be greater than the temperature
which causes the heater motor to start (i.e., AIR.temp > CONTROLLER.tr - 2). This seemed
reasonable since the system should be idle if the air is warm enough. To enter the MOTOR-ON

state, the AIR.temp must be less than CONTROLLER.tr - 2. While in the MOTOR-ON, the

122

MASTER-SWITCH-OFF event occurred, turning the MASTER-SWITCH off. This caused the sys-
tem to transition into the OFF state. When the system transitioned from the OFF state back
to the IDLE state, the AIR.temp had not changed. It was still less than CONTROLLER.tr - 2

and a state-space violation occurred.

e A similar problem occurred with the HOLD state’s state-space. Originally, we specified that
the water-valve should be opened in this state. Testing the specification revealed that this

was an incorrect requirement.

o Developing the user interface to the executable specification showed that external events

needed to be specified to fully describe the connection of the system to its environment.

e Execution showed that we were missing the ABNORMAL SHUTDOWN state. HOLD’s state-space
required both the fuel-flow and combustion sensors to be unsafe. However, the system could
enter into the HOLD state if the MASTER-SWITCH was turned off during the RUNNING state.
Thus, the system was in the HOLD state but the sensors were safe which caused an error to

be raised.

These are just a sample of the problems which were discovered by testing the executable REFINE
specification that was automatically generated from the OML Home Heater specification. Clearly,
executing the Home Heater specification enabled us to produce a more consistent, unambiguous,

and functionally correct specification.

Executing the Library specification also revealed many of the same types of problems men-
tioned above. However, it was also very useful in validating (in a limited sense) our translation
software. One particularly important discovery was the necessity for all post-conditions in a behav-
ior rule to be mutually independent. This requirement is very important since we originally designed
the translation software to convert each pre-post-condition rule into a REFINE transform construct.
The order in which the post-conditions of a REFINE transform are satisfied cannot be determined

by the specifier, therefore each post-condition statement must be independent. This issue surfaced

123

when the executable specification terminated abnormally while executing the CHECKING-BOOK-
oUT function, because it tried to modify an attribute of an object that was not yet retrieved from
a store. In this case, executing the Library specification not only revealed problems with the Li-
brary requirements, but also exposed important performance restrictions regarding the translation

software.

5.6 Summary

This chapter has described the rationale used in constructing the software that automati-
cally translates an OML specification into an executable REFINE specification. The translation is

accomplished by a multi-step process:

1. The OML specification is parsed into a REFINE Abstract Syntax Tree (AST). This capabil-
ity was provided by developing OML’s domain model and grammar, which interface with

DiaLECT, REFINE’s compiler generation tool.

2. The OML objects contained in the AST are converted into equivalent® REFINE constructs by

the translation software.

3. A controlling function is added to the converted file by the translation software to produce

an executable specification.

Converting a process-oriented informal specification into an executable specification proved
to < more difficult than converting a state-based informal model. This was primarily true because
the process-oriented specification did not include any control information. In spite of the difficul-
ties encountered, the translation of both the state-based and process-based models into executable

specifications was very successful. The executable specifications derived from the Home Heater

8While there is no one-to-one mapping for all OML objects to REFINE objects, we feel that we have captured the
essential meaning of each particular OML object in REFINE and that, in this conceptual sense, the constructs are
equivalent. Translation of larger, more complex problem into OML should verify the correctness of our conceptual
mappings from OML to REFINE.

124

and Library problems exposed several inconsistent and incorrect requirements in their respective
informal specifications. Further, the translation process is very simple to perform and easily accom-
modates re-translation of modified specifications. Upon discovering an error, an OML specification
can be corrected, and then converted to an executable specification with one command. From a
specifier’s point of view, it was easy to focus on the specification alone and remain detached from
implementation issues. The Object Modeling Language and the translation software have shown
that the gap between informal and formal specifications can be spanned. The two techniques com-
plement each other: one aides the specifier in conceptualizing information, the other provides the
formality needed to remove ambiguity. Automation can assist the specifier in developing formal

specifications and maintaining the rigor necessary to build systems that meet these specifications.

125

VI. Conclusions and Recommendations
6.1 Objectives and Results

The goal of this thesis was to develop a method for transforming the information contained
in informal software specifications into an executable formal specification that can be used to verify

expected system behavior and serve as a basis for formal software derivation.

This research has successfully accomplished this goal by developing a method for bridging
the gap between informal and formal specifications. By developing a method for translating an
informal specification into an executable formal specification, users, specifiers, and, developers can
take advantage of the benefits offered by formal specifications. One direct benefit of this research
is that it provides a method for revealing requirement errors at a very early stage in the software

development lifecycle. The following objectives were established to help us achieve our goal:

1. To establish a minimal set of constructs that represent the content and behavior of informal
analysis models, specifically Entity Relationship Models (ERM), Data Flow Models (DFM),

and State Transition Models (STM).

2. To develop a methodology for translating the information contained in these informal models

into a formal object-based language.

3. To develop a tool to translate formal, object-based specifications into an executable environ-

ment.
This research produced the following results which directly contributed to meeting our ob-

jectives:

1. The development of the Unified Abstract Model (UAM) to provide a unified representation

of entity relationship, state transition, and data flow models.

2. The development of the Object Modeling Language (OML) which directly models the objects

in the UAM and which has a formal language notation amenable to automatic translation.

126

3. The development of a translation tool to convert an OML specification into an executable

specification.

We accomplished our first objective by defining the Unified Abstract Model (UAM) described
in Chapter III. The UAM was developed to provide a unified, object-oriented representation of

all the components (objects and attributes) necessary for modeling the information contained in

DFMs, STMs, and ERMs.

The Object Modeling Language (OML) defined in Chapter IV is the bridge that spans the
gap between informal and formal specifications. Our review of currently available specification
languages (see Chapter II) was intended to locate a specification language to support our Unified
Abstract Model. However, we did not find a specification language to directly and naturally
support the UAM. For this reason, we developed OML. OML directly supports the objects and
attributes defined in the UAM and provides a formal language notation that is easily parsed into
an Abstract Syntax Tree (AST) representation. Therefore, OML provides a structured notation
for naturally specifying informal specifications which is easily translated into a formal object-based

representation.

The translation software developed during this research successfully parses an OML specifi-
cation into an AST and then converts the information contained in the AST into an executable
REFINE specification. Through the execution of a specification, the user can now validate at a very
early stage of development, that his informal requirements specification correctly and unambigu-
ously captures his intentions. The translation software is described in Chapter V and is provided

in Appendix C.

Additionally, the REFINE Software Development Environment proved to be a very beneficial
development tool. DIALECT, REFINE’s language manipulation tool, enabled us to quickly develop
a compiler for translating an OML specification into a REFINE AST. We believe that DIALECT was

easier to learn and understand than other popular compiler tools, such as Lex and YACC, because

127

DIALECT’s syntax enabled the compiler software to very closely resemble the Backus Naur Format
description of the parsed language without requiring cryptic notations. Furthermore, REFINE’s
high level constructs significantly simplified the amount of effort needed to convert the information
contained in the AST into an executable specification. For example, REFINE’s universal and exis-
tential quantification capabilities allowed us to perform operations over a group of objects without

requiring us to produce detailed code for searching the object-base.

6.2 Recommendations for Fulure Research

This thesis was very successful in defining and implementing the techniques required to trans-
late an informal software specification into a formal executable specification. This section offers
several recommendations for future research. They are categorized into three groups: improvements

to the existing translation tool, additions to the translation tool, and supporting research.

6.2.1 Improvements to the Ezxisting Translation Tool.

o Augment the hierarchical structuring capabilities of OML. OML should be expanded to allow
it to model more complicated object hierarchies. For example, OML should be expanded to
allow the modeling of classes of classes for entity objects and to allow the definition of classes
for all other OML object types (e.g. classes of states, classes of processes, etc.). Additionally,

nesting of OML objects should be implemented to assist in modeling more complex problems.

e Take advantage of multiple relation tables to improve translation performance. Currently,
OML allows the specifier to define one or more relation tables. However, there is no mechanism
for knowing what kind of relationships are contained in each relation table. Multiple relation
tables that contain specific types of relationships can significantly improve the performance of
the translation software by reducing search time through the relation tables. This suggestion
is further discussed in Section 5.4.9. Other enhancements should be investigated to improve

the performance of the translation software.

128

o Augment the translation software to sequence events based on priority. OML allows the user

to specify a priority attribute (optional) for each event object. The priority should be used to
determine the sequence in which events occur if more than one event is eligible for processing
at the same time. The priority attributes should be used during the translation to guide the

execution of events.

6.2.2 Additions to the Translation Tool.

Define a controlling function for OML specifications that contain both state-based and process-
based information. Future research should investigate how state-based and process-based
information can be integrated together to develop one executable specification. This capa-
bility would be beneficial to Real-Time Structured Analysis (RTSA) which is a widely used
technique for specifying embedded computer systems. Currently, a different controlling func-
tion is added to the executable specification for state-based models and process-based models.
A third controlling function should be developed for cases when both state-based and process-
based information exist in the same OML specification. Additionally, while developing the
process translation routines, we noticed numerous instances where states and processes are
similar. It may be possible to combine state and process objects into one object, but a more
thorough analysis needs to be accomplished to evaluate all the side effects of such a funda-
mental change to the UAM and OML. If this combination is possible, then the two controlling

functions would have to be modified or merged together.

Add semantic checking of OML specifications. Future research should determine if the
semantic checking should be performed by the translation software or by the elicitation tool.
Section 4.3 discussed the semantic requirements of an OML specification. Currently, OML
specifications are not checked for these semantic requirements. For example, entity objects
should be checked to ensure that they are assigned legal values (i.e. correct type and within

specified range).

129

e Determine if OML should allow store objects to be specified as sequences. Currently, OML
allows the specifier to define the ordered-ness of a store object. Future research should
investigate whether a specification should stipulate whether or not the elements in a store are

ordered. This issue is discussed further in Section 5.4.8.

Fully incorporate PDL as an option for specifying behaviors. PDL is very important to OML
for allowing the realistic specification of continuous type behaviors. We have two suggestions
for accomplishing this task. Currently, the PDL provided in Appendix B is a subset of the Ada
language. We have integrated PDL’s domain model and grammar in with OML. However,
further modification must be made the PDL semantic checking and translation software as
discussed in Section 5.4.5. Once PDL is fully implemented in OML, the translation of pre-
post-condition behaviors should revert back to a REFINE transform construct. As a second
option, we suggest that a subset of REFINE be used as the PDL standard instead of Ada
PDL. In this case, the PDL would already be executable in the REFINE environment. An
evaluation would need to be performed to determine the minimal, most useful constructs
required to fully specify behavior. The advantage of this approach is that REFINE is a wide-
spectrum language and can specify sequential behaviors (that pre-post-conditions cannot) in

more general terms than Ada.

Incorporate the translation of OML object constraints. OML allows constraints to be spec-
ified for each object. Future research should determine what the constraints section of each
OML object should be used for, and how the constraints should be translated into the exe-
cutable specification. Section 5.4.10 provides several suggestions concerning the application of

constraints for each OML object and how they could be handled by the translation software.

6.2.3 Supporting Research.

Implement the direct simulation method for ezecuting an OML specification. This thesis

identified two methods for executing an OML specification. The method we pursued was the

130

translation of an OML specification into a REFINE specification (source code) which can be
compiled and executed in the REFINE environment. A major advantage of this method is
the REFINE specification can serve as a basis for formal software design. The second method
is to simulate the behavior of the OML specification by directly executing the information
contained in the AST. We recommend this approach be pursued in future research. The second
approach is more desirable for performance reasons. As the size of the OML specification
gets larger, it takes a longer amount of time to generate REFINE source code and compile
and load it than it would take to simply execute the AST. Further, this translation time also
affects the amount of time required to modify an OML specification and re-translate it into
an executable form. The direct simulation approach, however, does not produce a formal
specification, and therefore does not support continued development. Thus, both methods

have unique advantages and should be used to complement one another.

Implement more complezr problems in OML. The Library and Home Heater problems im-
plemented in this thesis were limited in complexity. More complex test problems should be
implemented in OML to further test its ability to capture the information contained in infor-
mal models. Additionally, relationship objects (modeled in ERMs) were not used during the
translation of the Library and Home Heater problems into executable specifications. More
complicated test cases may help in revealing the role that relationship objects play in the

development of an executable specification.

Develop an elicitation tool to assist the specifier in constructing an OML specification. OML
enabled the translation of informal specifications into formal specifications to be automatable,
but further support is needed to make construction of an OML specification a realistic task.
This is an example of the need to formalize and automate the specification process as well as
the specification. (11:52) The practicality of OML for modeling larger problems will likely be

limited without the support of a front end tool. Further, an elicitation tool would consistently

131

develop a syntactically and semantically correct OML specification. Also, specifying a large

problem manually in OML would be very tedious and prone to error.

Incorporate knowledge-based techniques. Currently during execution, the specification pro-
vides very rudimentary information as to the source of the specification error. The executable
specification “knows” if a state-space is incorrect or if a process has no in-flow data to operate
on. However, it cannot tell the specifier how the error condition occurred. The specifier must
rely on the OML specification, the informal model documentation, and his own ability to
construct the path of change that led to the error. Valuable knowledge could be gained by
researching the development of rules or procedures that will aide the specifier in locating the
source of inconsistency in the specification. This idea could also be extended to include the
development of a static correctness check that would occur prior to translation and execution

of the specification.

Verifying correciness. We have concluded that the translation process we developed is correct
on the basis of testing. After developing the translation process, we tested and improved it
while working through the Home-Heater problem. The basic translation methodology also
worked for the Library problem. However, we had to expand the translation process to handle
specific process-based information. We believe these two problems are representative of the
type of information that the translation software will encounter. However, this does not verify
that the translation process will work well for any case. Research needs to be done to develop
a technique, possibly from graph theory, for verifying that the translation software does, in
fact, map enough essential ideas from OML to REFINE for the REFINE specification to be

considered a valid representation.

132

6.3 Concluding Remarks.

Numerous past and current software development programs proclaim the need for software
engineers to do a significantly better job cf requirements analysis and specification. The increasing
complexity of problems that software is being required to solve can only exacerbate the problems of
current trends in software development. This thesis has identified a means for attacking one of soft-
ware development’s most difficult problems: correctly specifying software requirements. We have
developed a process for converting a user’s informal specification into an executable specification.
By observing the behavior of an executable specification, developers can validate the accuracy of
informal specifications and discover requirements errors prior to software development. This early
discovery of errors will result in substantially lower software costs, decreased risk in development,

and significantly improved software systems.

Furthermore, the formal, executable specification can serve as a basis for formal software
design and thus further aid in the development of successful software systems. We have shown
that informal and formal methods are complementary in nature, and we have provided a means for
“bridging the gap” between them. The software engineering community must make the transition

to formal methods in order to meet the demands of software development in the 1990’s and beyond.

133

Appendiz A. Summary of OML Syntaz and Semantics
A.1 Syntaz
A concise summary of OML syntax is given below using a slightly modified BNF notation.
Meta-symbols{unless quoted): <> == { }[] |
Reserved words are in bold face
Terminal symbols are un-delimited words
Symbols consisting of a string in angle brackets (e.g. < >) are nonterminals
Required punctuation is denoted by “double quotes”
[<symbol>] signifies zero or one occurrences of <symbol> (e.g. <symbol> is“optional”)
{<symbol>} signifies zero or more occurrences of <symbol>

{<symbol>}+ signifies one or more occurrences of <symbol>

1. Informal model

<informal-model> ::=
specification <name>

{<analysis-object>}+
2. Analysis Object
<analysis-object> ::= <class-definition> | <instance-definition>

<class-definition> ::=
< class-name> class-of entity

[parts <user-declared-attr> {“” <user-declared-attr>})

[constraints

{<expression>}]

134

<instance-definition> ::=
<object-name> instance-of
<instance-value>
[constraints

{<expression>}]
3. Instance Values

<instance-value> ::=
<entity-fact> | <process-fact> | <state-fact>
| <store-fact> | <relationship-fact> | <flow-fact>

| <event-fact> | <relation-table> | <behavior-fact>

<entity-fact> ::=
(entity type : (internal | external)
[parts <user-declared-attr> {“” <user-declared-attr>} })

| (<class-name> [values <user-defined-attr> {“;” <user-defined-attr>}])
<process-fact> ::= process

<state-fact> ::= state

state-space “:” <expression> {“” <expression>}
<store-fact> ::= store

nature “” set | sequence

content “:” <class-name>

[key “” <attribute-name>]

(R

[order “” ascending | descending)

<relationship-fact> ::= relationship
type “” ico | isa | general

cardinality “” 1-1 [m-1|1-m | m-m

135

<flow-fact> ::= flow
flow-link “” proc-proc | proc-store | proc-entity
| store-proc | entity-proc
flow-data “” <class-name> | <object-name>

<event-fact> ::= event

TR

event-type “” internal | external

”»

[priority “” integer-literal]

<relation-table> ::= relation-table

({32

<object-name> “,” <association-name> “,” <object-name>

“n “ "

{ > <object-name> “” <association-name> “,” <object-name>}
<association-name> ::= <object-name> | ICO | ISA

<behavior-fact> ::= behavior

<process-description-lang> | <pre-post-condition> | <decision-table>
<process-description-lang> ::= <ada-program>!

<pre-post-condition> ::=
<pre-condition> “- ->” <post-condition> event <next-event>

{%> <pre-condition> - ->” <post-condition> event <next-event>}
<pre-condition> ::= <expression> {“&” <expression>}

<post-condition> ::=
<assign-stmt> | <function-call>

{“&” <assign-stmt> | <function-call>}

<decision-table> ::=

»

< condition-row > {%” < condition-row >} “ ->

1See Ada PDL syntax Appendix B

136

[<action-row> {“” <action-row>}]
event {“,” <next-event>}+

<condition-row> 1=

“ » “»”

<condition-variable> “” <condition-entry> {“,” <condition-entry>}

<action-row>:.=

“®» @

<action-variable> “” <action-value> {“,” <action-value>}

<condition-entry> ::=
dont-care | <condition-value> | <condition-range>

©“ N

<condition-variable> ::= <object-name> “.” <attribute-name>

«»

<action-variable> ::= <object-name> “.” <attribute-name>
<condition-value> ::= <value>

<action-value> 1= <value>

<next-event>> ::= none | <object-name>

<condition-range> =

<predicate-oper> <argument> {<arithmetic-oper> <argument>}
4. Expressions

<expression> ::=
forall “(” <name> {“”<name>})”
“(” <expression> {“&”<expression>}“=>"<expression> “)”
| exists “(”<name> {“”<name> } “)” “(”<expression> {“&” <expression>} “)”
| “(” <expression>“)”
| not < expression>

| <expression> <connective> <expression>

137

| < condition>

| true
<connective> ::= and | or
<condition> ::= <term> <predicate-oper> <term>
<term> = <argument> {<arithmetic-oper> <argument>}
<predicate-oper> = < | > | >= | <= | = | # |in
<arithmetic-oper> ::= +| — | div | * | set-diff | union
<argument> := <condition-variable> | <value> | <setbuilder>
<setbuilder> ::= “{”<name> “|” <expression> {“&”<expression>} “}”
<getset> ::= “getset” <setbuilder>
<getitem> = “getitem” “(” <setbuilder> “)”
5. Statements
< assign-stmt > 1= <action-variable> “:=" (<term> | <getset> | <getitem>)

< function-call > ::=
create “(” < object-name> “:” <class-name> “)”
| destroy “(” <object-name> “)”

| display “(” <object-name> | <setbuilder> “)”
6. User-defined attributes and names
User defined attributes are identifiers introduced by the user:

<user-declared-attr> ::=
<attribute-name> “” <unranged-attr> |
(<ranged-attr> range “{” <enumerated-range> | <real-range> | <integer-range> “}")

(init-val <value>]

138

<user-defined-attr> ::= <attribute-name> “:” <value>
<unranged-attr> ::= boolean | string
<ranged-attr> ::= integer | real | symbol | set | sequence
<enumerated-range> = [<value> {“” <value>}+]
<real-range> ::= real-literal “..” real-literal
<integer-range> ::= integer-literal “..” integer-literal

7. Terminal symbol productions

<value> ::=
integer-literal | boolean-literal | real-literal

| string-literal | symbol-literal | set-literal | sequence-literal
<name> ::= string-literal
<attribute-name> ::= string-literal
<class-name> ::= string-literal

<object-name> ::= string-literal

139

A.2 Semantics

This section defines the semantic requirements of OML.

1. General semantics.

o All analysis object names must be unique.

2. Entities.

o An entity object’s range field defines the attribute’s legal range of values.

o The initial values assigned to all entity attributes must satisfy the state space of the

initial state.

3. Processes.

e None.

4. States.

e The first state in the OML specification is assumed to be the start state.

e The arguments used in defining the state space attribute must refer to existing entity

attributes.

o The state space attribute must define the value or range of all object attributes that are

important to the state.

5. Stores.

o The key and order attributes only apply to sequence-natured stores.

6. Flows.

o The flow-data attribute requires the class-name of the data that will be carried by the

flow.

140

7. Events.

o External events must be associated with a behavior object to cause a change in the

values of the state space objects.
e External events represent the actions a user can take during a simulation.

8. Relation-Tables.

e The ICO association is reserved for associations between a process, state, or external
event and its corresponding behavior. While an ICO association object does not need
to be explicitly specified, the object-ICO-behavior entry must be made in the relation

table.

9. Behaviors.

e Behaviors must be explicitly defined for all state, process, and external event objects.

o The event field in behavior objects is only used by state behaviors and control process

behaviors. External event behaviors cannot specify next events.

e If multiple behaviors are specified for one state, the state’s behaviors must be listed in
order of execution in the relation table. Each behavior will be executed in this order,

and only the last state behavior should specify a next event.

e The variables used in the expressions and statements of behavior descriptions must be
attributes of entity and flow objects. The entity attributes must be fully referenced by

giving, both the object name and the attribute name (e.g., object-name.attribute-name).

10. Expressions.

In the following discussion, S and X are sets and x is an element of a set:

o The set-diff operation requires two arguments, both of which are sets (e.g. S set-diff

{x}). This operation removes the second argument from the first argument.

141

e The union operation requires the first argument to be a set and the second argument to
be an element (e.g. S union x). This operation adds the second argument to the first

argument.

e The in operation requires the second argument to be a set. This operation checks to see

if the first argument is in the second argument.

o The getitem command locates a specific item in a store and allows the item to be modi-

fied, but does not remove the item from the store.

e The geiset command locates a set of items in a store but does not remove the set from

the store.

A.8 OML Domain Model

The following figures show the “is a” hierarchy that exists among the domain objects. Rect-
angles are object classes. The lines labeled in lower case are map names from one object to other
objects. Maps are unidirectional, therefore the object or group of objects that an object maps to

are represented as rounded rectangles.

142

OML-Object

J defined-name)

_,_l

{_ entifier-Det
Informal-Model < analysis-obj-map

(set(Analysis—Objec\))

___{

Analysis-Object |

defined-name
—(_identifier-Det)

-——| Process-Object '<
constraints-map J\ sot(Expression))

I/ defined-name \/— identifier-Def)
t—] stato-object K TR TR settExpression))
constraints-map { set({Expression))

identifier-Def)

rel-type-map \ﬁ Symbol)
cardinality-map C Symbol)
constraints-map C set{(Expression))

defined-name
—(entifier-Det)

nature-set-map
C Boolean)
content-name \f Identifier-Use)

—| Relationship-Object

—‘ Store-Object
key-name C Kdentifier-Use)
order-set-map e
C Boolean D)

constraints-map _C set(Exprossion))

identifier-Def)

defined-name
flow-link-map c
| -Object flow-data-)
mep Identifier-Use)

constraints-map _C set(Expr osdon)j

ale

Figure 16. Hierarchy Detail with Object Mappings

143

OML Object

(seq(Condition-Entry))

Identifier-Use)

Predicate-Range >

Literal-Constant)

Identifier-Use)

DT-Components name-use -

/ L Identifier-Use >

Condition-Row | —_condition-entry-map,~

name-use [/

N

condition-range -

N

Condition-Entry condition-value

-

Y dont-care-value Vs

AN

name-use -

- N\

Action-Row

action-entry-map)
C seq(Action-

name-use

Identifier-Use >

. .
i [s
S teral nt

ppc-pre-map :
s ession
PPC-Components _Sea(Expression))
u PPC-statements PpC-post-map (seq(Statement) >
ppc-event-map
o

Identifier-Use)

Figure 17. Hierarchy Detail with Object Mappings, Continued

144

TR T ARl A i

OML Object |

— Entity-Attributes | /

-———! User-Defined-Atir (Literal-Constant)
J\ symbol-value

defined-name

~(identifier-Def)
user-decl-attr-
type f\ Var-Type j

range-attribute
——I User-Declared-Attr "o { Atiribute-Range)
value-map

~(Uteral-Constant)

Symol)

symbol-value

—| Statement | Ihe
——{ Assignment-Statement ’< rhs
L——{ Function-Call |

Variabie-Use

aYaue

Expression

3
__[— defined-name C \dentifier-Det)
Ll ~ wentifier-Use)

—-{ Destroy IL name-use { Identifier-Use)
L oy — identifier-Use)
buiki-set-condition Expression)

Figure 18. Hierarchy Detail with Object Mappings, Continued

145

OML-Object

Analysis-Object

defined-name
(\dentifer-Def)

Event-Object

eventtype
(Boolean)

event-priority (Integer >

constraints-map C set{Expression))

Entity-Object

defined-name (

Identifier-Def >
@' -user-dec seq(User-oedared-At@

Entity-Class

constraints-map \[set{Expression) >

defined-name

Identifier-Def)

Mﬂ%(uw-omw-m@

Entity-Instance name-use (Identifier-Use >

ntity-user-def-
iy seq(User-Deﬁned-At@

constraints-map(el .)>

hetten® (" iontboroet)

Relation-Table

relation-sequence
b (" seqRelion))

traints
TR (setexpression))

from-obj-map

Identifier-Use >

. ass0c-0bj-map Va
Relation L Identifier-Use)

M‘-m_ap_{ Identifier-Use >

Figure 19. Hierarchy Detail with Object Mappings, Continued

146

OML.-Object

L Analysis-Object

——| Behavior-Object J

defined-name

/ (entifierDet)
—— Process-Desc-Lang pdl-map (Ada-Syntactic-Object)

straints-map
con (set{Expression))
defined-name identifier-Def)

behavior:
Pre-Post-Cond PRETP (seq(PPC-Statements))

straints-map
con nts Lset(Expression))

defined-name

(__ ientifier-Det)

dt-cond-row-map s6q(C Iition—Row))
dt-action-row-map

Decision-Table (__seq(Action-Row))
dt-event-map

seq(identifier-Use))

constraints-map ‘;set(Expresslon))

Figure 20. Hierarchy Detail with Object Mappings, Continued

147

OML-Object |

—[Var-Type |

——I Type-Boolean

—t Type-integer

——{ Type-Real

————{ Type-Set

————{ Type-Sequence

-———i Type-String

\—————L Type-Symbol

—-————-{_ Attribute-Range

4[Real-Range

real-low-map
g L

Real

real-high-map
N——

integer-low-map —

———[Integer-Range

Integer

)

D

G Integer)

l< integer-high-map C)
j

—1 Enumerated-Range };enumerated-range-map C set(Symbol)

Figure 21. Hierarchy Detail with Object Mappings, Continued

148

[OML-Object 1 argument-1

[\ Expression)
[Expression |<— argument-2 Ve Expression)
| Boolean-Expression |
— Boolean-Or]
1 Boolean-And]
—] Boolean-Not]
I compare-Not-Equal |
—] Compare-Equal]
—{ Compare-Greater-Or-Equal |
| Compare-Greater-Than |
— Compare-Less-Or-Equal |
—[compare-Less-Than |
_—[Compare-in-Domain I
_ ment
-~ Predicate-Range |- argu 'd Expresasion)
——[R-Greater-Or-Equat |
—] R-Equal]
— R-ar -Than |
——— R-Leas-Or-Equal |
——1 R-Less-Than |
— R-Not-Equal }
[Literal-Constant |
—] Booiean-Literal
+—1 True-Literal]
— False-Literal]
—r Integer-Literal } Integer-vakie-of C Integer >
[Real-Literal] real-vaiue-ot Real D)
I = C Py
[String-Literal 1 string-value-of C String)
L[symbol-Uteral__|-—> vl 'q Symbol D)
] Set-Literal]
L—[Ssequence-Literal |
| Ardthmetic-Expression |
+— Arithmetic-Add |
I Arithmetic-Subtract |
[Arithmetic-Divide |
+—1{ Adthmetic-Muttiply |
L] Unary-Minus |
—— Set-Expreasion]
— Set-Union 1
| Set-Difference |

[Variable-Use]

identifler-Use |

Figure 22. Hierarchy Detail with Object Mappings, Continued

ARARANALLL AN L LALN R AN AR N AN R AR RR AN AN ANA RN R AR KA A LA AR AN AN AR AR KRR AR LR AR L RL A%

Py
Py
wNA
.y ¥
pyys
W
pyys
Py 4
Y1)
pyy 3
¥y
WA

¥
File-Name : dm.re (OML domain model) %
A%
Authors : Capt Mary Boom, Capt Brad Mallare %%
w%%
Purpose : This file builds the domain model to support the OML %44

architecture defined in Chapter 3 of our thesis. There are three main %%%
types of constructs in this file: Object class definitions, attribute %%
maps and tree attribute definitions. The object class are defined in %%%
the first part of this file and are written in an ISA type hierarchy. %%%
Attribute maps and tree attribue definitions are partitioned according %%%
to object type. 42

WAL LR AU AR AR AR AR AR AR AR R AR A AR AR RARAR TR AARRAR LA RN AR AL RN R AR LA L RRRAALR

{1 in-package("RU")
{1 in-grammar(’user)

RALAARAAAAAARLARAAAAAAARLAALLAL%A OBIECT CLASSES AAAUAUNAAANRARKAAARRAAARLLRAALUS

var OML-Object : object-class subtype-of user-object
var Ada-Syntactic-Object : object-class subtype-of user-object
var Informal-Model : object-class subtype-of OML-Object

%%% The following objects match the objects required in the OML architecture
var Analysis-Object : abject-class subtype-of OML-Object

var Entity-object : object-class subtype-of Analysis-Object
var Entity-Class : object-class subtype-of Entity-Object
var Entity~Instance : object-clase subtype-of Entity-Object
var Process-0Object : object-class subtype-of Analysis-Object
var State-Object : object-class subtype-of Analysis-Object
var Behavior-Object : object-class subtype-of Analysis-Object
var Process-Desc-Lang : object-class subtype-of Behavior-Object
var Pre~Post-Cond : object-class subtype-of Behavior-Object
var Decision-Table : object-class subtype-of Behavior-Object
var Store-Object : object-class subtype-of Analysis-Object
var Relationship-Object : object-class subtype-of Analysis-Object
var Flow-0Object : object-class subtype-of Analysis-Object
var Event-Object : object-class subtype-of Analysis-Object
var Relation-Table : object-class subtype-of Analysis-Object
var Relation : object-class subtype-of Relation-Table
%%% The following objects are needed for specifying Behaviors

var DT-Components : object-class subtype-of OML-Object

var Condition-Row : object-class subtype-of DT-Components
var Condition-Entry : object-class subtype-of DT-Components
var Action-Row : object-class subtype-of DT-Components
var Action-Entry : objact-class subtype-of DT-Components
var PPC-Components : object-class subtype-of OML-Object

var PPC-Statement : object-class subtype-of PPC-Components

%%% The following are necessary for specifying Entity attributes

150

var Entity-Attributes
var User-Defined-Attr
var User-Declared-Attr

: object~class subtype-of OML-Object
: object-class subtype-of Entity-Attributes
: object-class subtype-of Entity-Attributes

%%% The following are necessary for specifying the range of Entity attributes

var Attribute-Range : object-class subtype-of OML-Object

var Integer~-Range : object-class subtype~of Attribute-Range
var Real-Range : object-class subtype-of Attribute~Range
var Enumerated-Range : object-class subtype-of Attribute-Range

%%% The following are Expression objects

var Expression : object-class subtype-of OML-Object

var Boolean-expression : object-class subtype-of expression

var Boolean-And : object-class subtype-of boolean-expression
var Boolean-Not : object~class subtype-of boolean-expression
var Boolean-Or : object~class subtype-of boolean-expression
var Compare-Equal : object~class subtype-of boolean-expression
var Compare-Greater-Or-Equal : object~class subtype-of boolean-expression
var Compare-Greater-Than : object~class subtype-of boolean-expression
var Compare-Less-0r-Equal : object~class subtype-of boolean-expression
var Compare-Less-Than : object-class subtype-of boolean-expression
var Compare-Not-Equal : object-class subtype-of boolean-expression
var Compare-In : object-class subtype-of boolean-expression
var Compare-For-All : object-class subtype-of boolean-expression
var Compare-Exists : object-class subtype-of boolean-expression
var Predicate-Range : object-class subtype-of expression

var R-Equal : object-class subtype-of predicate-range
var R-Greater-0Or-Equal : object-class subtype-of predicate-range
var R-Greater-Than : object-class subtype-of predicate-range
var R~Less~0r-Equal : object-class subtype-of predicate-range
var R-Less-Than : object-class subtype-of predicate-range
var R-Not-Equal : object-class subtype-of predicate-range
var Arithmetic-expression : object-class subtype-of expression

var Arithmetic-Add : object-class subtype-of arithmetic-expression
var Arithmetic-Subtract : object-class subtype-of arithmetic-expression
var Unary-Minus : object-class subtype-of arithmetic-expression
var Arithmetic-Divide : object-class subtype-of arithmetic-expression
var Arithmetic-Multiply : object-class subtype-of arithmetic-expression
var Set~expression : object-class subtype-of expression

var Set-Union : object-class subtype-of set-expression

var Set-Diff : object-class subtype-of set-expression

var GetItem : object-class subtype-of set-expression

var GetSet : object~class subtype-of set-expression

var SetBuilder : object-class subtype-of set-expression

var Literal-Constant : object-class subtype-of expression

var Integer-Literal : object-class subtype-of literal-Constant

var Real-Literal : object-class subtype-of literal-Constant

var Boolean-Literal : object-class subtype-of literal-Constant

151

var False-Literal : object-class subtype-of Boolean-Literal
var True-Literal : object-class subtype-of Boolean-Literal
var String-Literal : object-class subtype-of literal-Constant
var Symbol-Literal : object-class subtype-of literal-Constant
var Set-Literal : object-class subtype-of literal-Constant
var Sequence-Literal : object-class subtype-of literal-Constant
var Variable-Use : object-class subtype-of expression

var Identifier-Use : object-class subtype-of Variable-Use

%%% The following are Statement objects

var Statement : object-class subtype-of OML-object

var Assignment-Statement : object-class subtype-of Statement
var Function-Call : object-class subtype-of Statement
var Create : object-class subtype-of Function-Call
var Destroy : object-class subtype-of Function-Call
var Display : object-class subtype-of Function-Call

%%% These object classes represent the declared variables

var Identifier
var Identifier-Def

: object-class subtype-of OML-object
: object-class subtype-of identifier

%%% These object classes represent the legal variable types

var Var-Type : object-class subtype-of OML-Object
var Type-boolean : object-class subtype-of var-type

var Type-integer : object-class subtype-of var-type
var Type-real : object-class subtype-of var-type
var Type-gset : object-class subtype-of var-type
var Type-sequence : object-class subtype-of var-type
var Type-string : object-class subtype-of var-type

var Type-symbol : object-class subtype-of var-type
var Flow-Type
var Flow-PP
var Flow-PS
var Flow-5P
var Flow-PE
var Flow-EP

: object-class subtype-of OML-Object
: object-class subtype-of flow-type
: object-class subtype-of flow-type
: object-class subtype-of flow-type
: object-class subtype-of flow-type
: object-class subtype-of flow-type

var Cardinality-Type : object-class subtype-of OML-Object

var One-Many : object-class subtype-of cardinality-type
var One-0One : object-class subtype-of cardinality-type
var Many-Many : object-class subtype-of cardinality-type
var Many-One : object-class subtype-of cardinality-type

AAARRALDARARARARARAALAAAY, ANALYSIS-OBIECT-ATTRIBUTES %A%%NARAANUAAANAAANANLLL ALY

var CONSTRAINTS-MAP : map(Analysis-Object, seq(Expression)) ={]|}
var DEFINED-NAME : map(OML-Object, Identifier-Def) = {|]}
var NAME-USE : map(OML-object, Identifier-use) = {|[}
var NAME-USES : map(OML-Object, seq(Identifier-use)) = {11}
var VALUE-MAP : map(OML-Object, Literal-Constant) = {]|}

152

var VARIABLE-TYPE : map(OML-Object, Var-Type) = {|[}
var ANALYSIS-0BJ-MAP : map(OML-Object, set(Analysis~Object)) = {{1}

form ANALYSIS-OBJECT-ATTRIBUTES

define-tree-attributes (’Informal-Model, {’Defined-Name,
’Analysis-0Obj-Map})

ARAAAAAANARAAURARRAAANAALAAYS EXPRESSION-ATTRIBUTES %AUNAAAAAAUALAAALAUAAANLALLY

var ARGUMENT-1 : map(expression, expression) ={ll}
var ARGUMENT-2 : map(expression, expression) = {|1}
var ARGUMENT : map(predicate-range, expression) = {1}
var SET-ARG : map(expression, set(boolean-expression)) = {||}
var SET-DIFF-CONDITION : map(set-expression, seq(expression)) = {}1}
var SETBUILDER-MAP : map(set-expression, setbuilder) = {{1}
var INTEGER-VALUE-OF : map(Integer-Literal, Integer) = {|I}
var REAL-VALUE-OF : map(Real-Literal, Real) = {il}
var STRING-VALUE-OF : map(String-Literal, String) = {li}
var SYMBOL-VALUE-OF : map(Symbol-Literal, Symbol) = {1}

AARRRARAAAALRARAAALRAAAARAAAUNALYL ENTITY-ATTRIBUTES %%%LAAAA%UAUNEAALAAUAAAALAA ALY

var ENTITY-USER-DECL-MAP : map(Entity-Object, seq(User-Declared-Attr)) = {}}}
var ENTITY-USER-DEF-MAP : map(Entity-Object, seq(User-Defined-Attr)) = {|{}
var EXTERNAL-ENTITY : map(Entity-Object, Boolean) ={||}

form ENTITY-OBJECT-ATTRIBUTES

define-tree-attributes (’Entity-Class, {’Defined-Name,
’External-Entity,
’Entity-User-Decl-Map,
’Constraints-Map});

define-tree-attributes (’Entity-Instance, {’Defined-Name,
’Entity-User-Decl-Map,
’Name-Use,
’Entity-User-Def-Map,
’External-Entity,
’Constraints-Map})

RRRAARLRARAARAARRAARRAALAN LY USER-DECLARED-ATTRIBUTES A%A%A%UNAAANLANANAAAAANZA%AY

var USER-DECL~ATTR-TYPE : map(User-Declared-Attr, Var-Type) = {11}
var RANGE-ATTRIBUTE : map(OML-Object, Attribute-Range) = {|1}
var ENUM-RANGE-MAP : map(Enumerated-Range, set(symbol)) = {l1}
var INTEGER-HIGH-MAP : map(Integer -nange, Integer) = {I1}
var INTEGER-LOW-MAP : map(Integer-Range, Integer) = {|I}
var REAL-HIGH-MAP : map(Real-Range, Real) = {I1}
var REAL~LOW-MAP : map(Real-Range, Real) = {I1}
var SYMBOL-VAL : map(Entity-Attributes, Symbol) = {11}

form USER-DECLARED-ATTRIBUTES

define-tree-attributes (’User-Declared-Attr, {’Defined-Name,

153

*User-Decl-Attr-Type,

’Range-Attribute,

’Value-Map,

’Symbol-Val});
define-tree-attributes (’User-Defined-Attr, {’Name-Use,

’Value-Map,

’Symbol-Vall);
define-tree-attributes (’Enumerated-Range, {’enum-range-map});
define-tree-attributes(’Integer-Range, {’integer-low-map,

’integer-high-map});

define-tree-attributes(’Real-Range, {’real-low-map,
’real~high-map})

RAARAAAAARAAARARAAAARAAUULAL%Y PROCESS-ATTRIBUTES %%UUAAAARUNAUAARUR LA L ARAALLL
form PROCESS-0BJECT-ATTRIBUTES

define-tree-attributes(’Process-Object, {’Defined-Name,
’Constraints-Map})

WUAAAUALAAAR AL LN AANAAUAAAAAA%% Y, STATE-ATTRIBUTES %A%N AN AAAALAAAA AU ALAA AL AL % LA
var STATE-SPACE-MAP : map(State-Object, set(expression)) = {l|}
form STATE-OBJECT-ATTRIBUTES
define-tree-attributes(’State-Object, {’Defined-Name,
’State-Space-Map,

’Constraints-Map})

AAALARAXALAARA ALK A AAALLLA%Y BEHAVIOR-ATTRIBUTES %%UARNAUUAALLAAUALLAL A AU ALAANY

var BEHAVIOR-PPC-MAP : map(Pre-Post-Cond, seq(PPC-Statement)) = {11}
%%var PDL-MAP : map(Process-Desc-Lang, Ada-Syntactic-Object) = {||}
var PPC-PRE-MAP : map(PPC-Statement, seq(Expression)) = {11}
var PPC-POST-MAP : map(PPC-Statement, seq(Statement)) = {|1}
var PPC-EVENT-MAP : map(PPC-Statement, Identifier-Use) = {]I}
var DT-COND-ROW-MAP : map(Decision-Table, seq(Condition-Row)) = {|1}
var DT-ACTION-ROW-MAP : map(Decision-Table, seq(Action-Row)) = {11}
var DT-EVENT-MAP : map(Decision-Table, seq(Identifier-Use)) = {1}
var CONDITION-ENTRY-MAP : map(Condition-Row, seq(Condition-Entry)) = {|1}
var CONDITION-RANGE : map(Condition-Entry, Predicate-Range) = {1}
var DONT~CARE-VALUE : map(Condition-entry, Boolean) = {11}
var ACTION-ENTRY-MAP : map(Action-Row, seq(Action-Entry)) = {I}
var ACTION-VALUE : map(Action-Entry, Literal-Constant) = {I1}
var ACTION-EXPR : map(Action-Entry, Arithmetic-expression) = {11}

form BEHAVIOR-0BJECT-ATTRIBUTES

154

define-tree-attributes (’Pre-Post-Cond, {’Defined-Name,
’Behavior-PPC-Map,
’Constraints-Map});

define~tree-attributes (’PPC-Statement, {’PPC-Pre-Map,
’PPC-Post-Map,
’PPC-Event-Map}) ;

% define-tree-attributes(’Process-Desc~Lang, {’Defined-Name,
% ’PDL-Map,
% ’Constraints-Map});

define-tree-attributes(’Condition-Row, {’Name-Use, ’condition-entry-map});
define-tree-attributes(’Action-Row, {’Name-Use, ’action-entry-map});

define-tree-attributes(’Condition-Entry, {’condition-range,
’dont-care-value,
‘name-use});

define-tree-attributes(’Action-Entry, {’action-value,
’name-use,
Jaction-exprl});

define~tree~attributes(’Decision-Table, {’Defined-Name,
’DT-Cond-Row-Map,
’DT-Action-Row-Map,
'DT-Event-Map,
’Constraints-Map})

AARRARAARAARAANAXRANALAANAA%AY STORE-ATTRIBUTES AUNANAUAALANARANUALARALRALXRRAL

var NATURE-SET-MAP : map(Store-Object, boolean) = {||}
var CONTENT-NAME : map(Store-Object, Identifier-Use) = {11}
var KEY-NAME : map(Store~Object, Identifier-Use) = {l1}
var ORDER-SET-MAP : map(Store-Object, boolean) = {1}

form STORE-OBJECT-ATTRIBUTES
define-tree-attributea(’Store-Object, {’Defined-Name,
’Nature-Set-Map,
’Content-Name,
’Key-Name,
’Order-Set-Map,
’Constraints-Map})

AAARRAAAANAARAAALRANANL LN RELATIONSHIP-ATTRIBUTES AANXARRARARAAXAANAANAAAANR ALY

var REL~TYPE-MAP : map(Relationship-Object, symbol) = {|1}
var CARDINALITY-MAP : map(Relationship-Object, cardinality-type) = {||}

form RELATIONSHIP-OBJECT-ATTRIBUTES
define-tree-attributes(’Relationship-Object, {’Defined-Name,
’Rel-Type-Map,
’Cardinality-Map,
’Constraints-Map})

155

ARARARLRAAAUAAAARAANAALALN AN FLOW-ATTRIBUTES LAANANARRAANARAANNARNRAAARNARALNAL

var FLOW-LINK-MAP : map(Flow-Object, flow-type) = {|1}
var FLOW-DATA-MAP : map(Flov-Object, identifier-use) = {11}

form FLOW-OBJECT-ATTRIBUTES
define-tree-attributes(’Flow-Object, {’Defined-Name,
’Flow-Link-Map,
’Flow-Data-Map,
’Constraints-Map})

RARRAAAAARAANL A AN LA AAAAALLUALY, EVENT-ATTRIBUTES RUUNAURRAUNAURAAAREAALLAAAAAAR LAY,

var EVENT-TYPE : map(Event-Object, boolean) = {il}
var EVENT-PRIORITY : map(Event-Object, integer) = {il}

form EVENT-0BJECT-ATTRIBUTES
define-tree-attributes(’Event-Object, {’Defined-Name,
’Event~Type,
’Event-Priority,
’Constraints-Map})

ARAAALALAAANRAALLANAA%N A4S RELATION-TABLE-ATTRIBUTES AAXAANAARAAUARRARUARAALLLA

var RELATION-SEQUENCE : map(Relation-Table, seq(Relation)) = {Il}
var FROM-0BJ-MAP : map(Relation, Identifier-Use) = {(1}
var ASSOC-0BJ-MAP : map(Relation, Identifier-Use) = {l1}
var TO-OBJ-MAP : map(Relation, Identifier-Use) = {{{}

form RELATION-TABLE-ATTRIBUTES
define-tree-attributes (’Relation-Table, {’Defined-Name,
’Relation-Sequence,
’Constraints-Map});
define-tree-attributes(’Relation, {’From-Obj-Map,
’Assoc~0bj-Map,
*To-0bj-Map})
BRAARAUAAAARRLARAARUUAREANR L %Y, ASSIGNMENT-STATEMENTS %U%AAAAUUNNAANAAAALAUNULLL

var LHS : map(Assignment-Statement, variable-use) = {|1}
var RHS : map(Assignment-Statement, expression) = {1}

form ASSIGNMENT-STATEMENT-ATTRIBUTES
define-tree-attributes(’Assignment-Statement, {’LHS, ’RHS})

KARLRRAARAALARAAAURAAARGAARALY, FUNCTION-CALLS %UUANAXANXRAXAALXAXAAANAALANAALL LAY
var DISPLAY-SET : map(display, set-expression) = {|1}
form FUNCTION-CALL-ATTRIBUTES

define-tree-attributes(’Create, {’defined-name, ’name-use});

define-tree-attributes(’Destroy, {’name-use});

define-tree-attributes(’Display, {’name-use, ’display-set})

157

A.4 OML Grammar
PN YA YA AN AN AN NAN NN NN AN AN AN AN A AN NN NN I A N A YA YA NI NN SAAA NS AN YAy yy Yy A ah Y

N4 %%
%%% File-Name : gm.re (OML grammar productions) X%%
A% Y34
%%% Authors : Capt Mary Boom, Capt Brad Mallare %%
Ah% 4]

%%% Purpose : This file builds the productions that define the grammar Py 42
A% for an OML specification. When parsing COML specifications, these %%

%%% productions ensure that the specifications satisfy the syntax %44
%A% requirements defined in the OML BNF. %A%
w44 %A%

R AR AR AR AL AR AR R AR AR AR LA RA A AR R AR AR AL AR AR AR A AN ERN AR A LA RAAARAAAAAL AL

'! in-package("ru")
{1 in-grammar{(’syntax)

grammar OML
start-classes informal-model
file-classes informal-model
productions

informal-model ::=
["specification" defined-name analysis-obj-map + "']
builds informal-model,

ARURARAAAALARAAAAAAAAAANLY ENTITY OBJECT PRODUCTIONS %AUAAAANAARUNALAL NAALLAAALLALY

entity~class ::=
[defined-name "class-of" "entity"
"type" ":" (["external" !! external-entity] | "internal")
{["parts" entity-user-decl-map + ";"]}
{["constraints" constraints-map + ";"]}]
builds entity-class,

entity-instance ::=
[defined-name "instance-of"

(["entity"
"type" ":" (["external" !! external-entity] | "internal")
{["parts" entity-user-decl-map + ";"]1}]

| [name-use
{["values" entity-user-def-map + ";"]}]

)
{["constraints" constraints-map + ";"]}]
builds entity-instance,

RARRARARARALAAANAA AR %A% %Y USER-DECLARED~-ATTRIBUTE-PRODUCTIONS %XAUNLANALLLULAAALLL
user-declared-attr ::=

{defined-name ":" variable-type
{["range" "{" range-attribute "}"]}

158

{["init-val" (value-map | symbol-val)]}]
builds user-declared-attr,

user-defined-attr ::=
[name-use ":" (value-map | symbol-val)l
builds user-defined-attr,

enumerated-range ::=
[enum-range-map + ","]
builds enumerated-range,

integer~range ::=
[integer-low-map "." "." integer-high-map]
builds integer-range,

real-range ::=
[real-low-map "." "." real-high-map]
builds real-range,

AARARAAAAAALLAALULL LA %L, PROCESS OBJECT PRODUCTIONS AAARAAAALAAANAALRAAANALALLS

process-object ::=
[defined-name "instance-of" "process"
{["constraints" constraints~map + ";"]}]
builds process-object,

AAARAAALAUAALAAAUALAA%LL %% STATE OBJECT PRODUCTIONS AAANAARNAULAAAANARANARALALL

state-object ::=
[defined-name "instance-of" "state"
"state-space" ":" state-space-map + ";"
{["constraints" constraints-map + ";"]}]
builds state-object,

ARAAAALAAAAUALLAAAL LA %Y BEHAVIOR OBJECT PRODUCTIONS AXNANRAAANARAUNAAXAAANAAAALY

decision-table ::=
[defined-name "instance-of" "behavior"

[dt-cond-row-map + ";"] "-->"

{(dt-action-row-map + ";" 1}

["event" "," dt-event-map + ","]
{["constraints” constraints-map + ";" 1}]

builds decision-table,
condition-row ::=
[name-use "," condition-entry-map + ","]
builds condition-row,
action-row ::=
[name-use "," action-entry-map + ","]

builds action~row,

% Name nme in the next production allows us to have symbols such as ’safe and
% ’unsafe in the decision tables. It is not a pure use of the map name-use.

condition-entry ::=

159

{ (["dont-care" !! dont-care-value] | condition-range)] %%! name-use
builds condition-entry,

action-entry ::=
[(action-value | name-use | action-expr)]
builds action-entry,

pre-post-cond ::=
{defined-name "instance-of" "behavior"
behavior-ppc-map + ";"
{["constraints" constraints-map + ";"]}]
builds pre-post-cond,

ppc-statement ::=
[ppc-pre-ap 4+ NgNn Naoyn {[ppc-post-lap + u&n]}
"event" ppc-event-map]
builds ppc-statement,

% process-desc-lang ::=

% [defined-name pdl-map

% {["constraints" constraints-map + ";"]}]
% builds process-desc-lang,

%%4% place-holder for pdl, pending implementation

% ada-syntactic-object ::=
% ["null"] builds ada-syntactic-object,

UAARAAAAALAAANAAUAANLALY, STORE OBJECT PRODUCTIONS AAAXARAARULANANAKAARAALLNALE,

store-object ::=
[defined-name "instance-of" "store"

"nature” ":" (["set" !! nature-set-map] | "sequence")
"content" ":" content-name
{["key" ":" key-namel}
{["order" ":"(["ascending" !! order-set-map] | "descending")]}

{["constraints" constraints-map + ";"]}]
builds store-object,

RARAAALARAAAAAAALAAY, RELATIONSHIP OBJECT PRODUCTIONS AUARAUNAAANXALANAAANAR

relationship-object ::=
{defined-name "instance-of" "relationship"

"type" "aen rel-type-nap
"cardinality" ":" cardinality-map
{["constraints" constraints-map + ";"]}]

builds relationship-object,
ARRARARAAULARAALURAXALY, FLOW OBJECT PRODUCTIONS AANAAAAAAAAANXALAAALAXRAALL

flow-object ::=
[defined-name "instance-of" "flow"

"flow-link" ":" flow-link-map
"flow-data" ":" flow-data-map
{["constraints" constraints-map + ";"]}]

builds flow-object,

160

ARAUAAAAALAAAAULLALLAAKL EVENT OBJECT PRODUCTIONS %AANUXAAAANLANUNLUNLLLAN ALY

event-object ::=
[defined-name "instance-of" "event"
*type" ":" (["internal" !! event-type] | "external)
{["priority" ":" event-priorityl}
{{"constraints" constraints-map + ";"]1}]
builds event-object,

SLAALLAL AL LLLALLAL LY RELATION-TABLE OBJECT PRODUCTIONS %% 4% LAY LU LU LLALLLL

relation-table ::=
[{defined-name "instance-of" "relation-table"
relation~sequence + ";"
{["constraints" constraints-map + ";"]}]
builds relation-table,

relation ::=
[from-obj-map "," assoc-obj-map "," to-obj-mapl
builds relation,

ARAALAAAAALLAANALAAA% IDENTIFIER OBJECT PRODUCTIONS %%AANANAAUAAANNUUURARLLAY

identifier-def ::= [name]
builds identifier-def,

identifier-use ::= [name]
builds identifier-use,

RARRARAARARAAAAAALAA%% LITERAL CONSTANT PRODUCTIONS %A%%UANAARANAULAUAL XA LAY

integer-literal ::= [integer-value-of]
builds integer-literal,

real-literal ::= [real-value-of]
builds real-literal,

true-literal ::= ["true"]
builds true-literal,

false-literal ::= ["false"]
builds false-literal,

string-literal ::= [string-value-of]
builds string-literal,

ARARRARAAAARLAAAALALANALAAAY VARIABLE TYPE PRODUCTIONS %%AAUXAXAAAAXUNAALALAAAANL

type-boolean ::= ["boolean"]
builds type-boolean,

type~string ::= ["string"]
builds type-string,

type-symbol ::= ["symbol"]

builds type-symbol,

type-integer ::= ["integer"]
builds type-integer,

type-real ::= ["real"]
builds type-real,

type~set ::= ["set"]
builds type-set,

type-sequence ::= ["sequence"]
builds type-sequence,

AARRRRRAAAARRAANARAAAAAALA%Y FLOW TYPE PRODUCTIONS AAUUARANAAANAUAALLLAALLLAY

flow-pp ::= ["proc-proc"]
builds flow-pp,

flow-ps ::= ["proc-store"]
builds flow-ps,

flow-sp ::= ["store-proc"]
builds flow-sp,

flov-pe ::= ["proc-entity"]
builds flow-pe,

flov-ep ::= ["entity-proc"]
builds flow-ep,

RARLAAAAARAALRALAAAAAAANLL CARDINALITY TYPE PRODUCTIONS %%AAANANARUUUAAARALAAL

One-Many ::= ["1-m"]
builds One-Many,

One-One ::= ["1-1"]
builds One-One,

Many-One ::= ["m-1"]
builds Many-One,

Many-Many ::= ["m-m"]
builds Many-Many,

ARAAALRRARANAAAAAANAUAN %ALY EXPRESSION PRODUCTIONS 4UANAAAANANAAN LN A AN L LAAL% LY
%%% Arithmetic Expressions %i%
arithmetic-add ::= [argument-1 "+" argument-2] builde arithmetic-add,
unary-minus ::= ["-" argument-1] builds unary-minus,

arithmetic-divide ::= [argument-1 "/" argument-2]
builds arithmetic-divide,

162

arithmetic-multiply ::= [argument-1 "#" argument-2]
builds arithmetic-multiply,

arithmetic-subtract ::= [argument-1i "-" argument-2]
builds arithmetic-subtract,

%%% Boolean Expressions %%%

boolean-and ::= [argument-1 "and" argument-2]
builds boolean-and,

boolean-not ::= ["not" argument-1]
builds boolean-not,

boolean-or ::= [argument-i "or" argument-2]
builds boolean-or,

compare-equal ::= [argument-1 "=" argument-2]
builds compare-equal,

compare-greater-or-equal ::= [argument-1 ">=" argument-2]
builds compare-greater-or-equal,

compare-greater-than ::= [argument-1 ">" argument-2]
builds compare-greater-than,

compare-less-or-equal ::= [argument-1 "<=" argument-2]}
builds compare-less-or-equal,

compare-less-than ::= [argument-1 "<" argument-2]
builds compare-less-than,

compare-not-equal ::= [argument-1 "/=" argument-2]
builds compare-not-equal,

compare-in ::= [argument-1 "in" argument-2] %% arg-2 must be a set
builds compare-in, %% or seq

compare-for-all ::= ["forall" "(" name-uses + "," ")"
n(n [set-arg + "t"] Mt argunent-l n)u]
builds compare-for-all,
compare-exists ::= ["exists'" "(" name-uses + "," ")"
n(u [set-arg + N!ll] n)u]
builds compare-exists,

%%% Set comprehension expressions %%%

set-union ::= [argument-1 "union" argument-2]
builds set-union,

set-diff ::= [argument-1 "set-diff" setbuilder-map]
builds set-diff,

getitem ::= ["getitem" "(" setbuilder-map ")"]
builds getitem,

163

getset ::= ["getset" setbuilder-map]
buildas getset,

setbuilder ::= ["{" defined-name "|" set-diff-condition + "&" "}"]
builds setbuilder,

%%% Predicate Range Expressions %%%

r-equal ::= ["=" argument]
builds r-equal,

r-greater-or-equal ::= [">=" argument]
builds r-greater-or-equal,

r-greater-than ::= [">" argument]
builds r-greater-than,

r-less-or-equal ::= ["<=" argument]
builds r-less-or-equal,

r-less-than ::= ["<" argument]
builds r-less-than,

r-not-equal ::= ["/=" argument]
builds r-not-equal,

RRAARLARAALARALLLALUANLAAALY, STATEMENT PRODUCTIONS AANUARANAAUARALALALALLALANL

assignment-statement ::= [LHS ":=" RHS]
builds assignment-statement,

create ::= ["create" "(" defined-name ':" name-use ")"]
builds create,

destroy ::= ["destroy" "(" name-use ")"]
builds destroy,

display ::= ["display" "(" (name-use | display-set) ")"]
builds display

LAY IANA NS AN AN R YRS A YAV I S AR RNV AN AN VYA AR NS Y YA RIS AN AN AN N AAA VR AN Y SIS A YA A b A by AN

no-patterns
precedence
for expression brackets "(" matching ")"

(same-level "and", "oxr" associativity left),

(same-level "<'", "<=", "=m" MW =m! WHM_ 0/uM agggciativity none),
(same-level "in", "set-diff", "union" associativity left),

(same-level "+", "-" associativity left),

(same-level '"#", "/" associativity left),

(same-level "not" associativity none)

symbol-start-chars

164

"abcdefghijklmnopqrstuvexyzABCDEFGHI JXLMNOPQRSTUVWXYZ"

symbol-continue-chars
"abcdefghijklmnopqrstuvexyzABCDEFGHI JKLMNOPQRSTUVWXYZ0123456789-."

comments
"%" matching "
"

"#] 1" matching "||#" nested

end

165

Appendiz B. Ada (Subset) Program Design Language (PDL)

1. Program Parts
<Ada-Program> ::= <Procedure-Declaration>

<Procedure-Declaration> ::= “procedure” <Identifier-Definition> “is” <Ablock>

<Function-Declaration> ::=“function” <Identifier-Definition>

“return” <Var-Type> “is” <Ablock>

<Ablock> ::= {<Declaration-Statement>} “begin”

{<Astatement>}+“end” {<Identifier-Definition>} "

<Declaration-Statement> ::= <Variable-Declaration>

| <Enumerated-Declaration> | <Subprogram-Declaration>

<Variable-Declaration> ::= <Identifier-Definition> {, <Identifier-Definition>}“:”

«,»”

[<Constant-Flag>] <Var-Type> [“:="<Expression>]*

<Enumerated-Declaration> ::= “type” <Identifier-Definition> “is”

“(” <Identifier-Definition> {, <Identifier-Definition>}“)” “;”
<Subprogram-Declaration> ::=(<Procedure-Declaration> | <Function-Declaration>)
<Var-Type> ::= <“boolean”|“integer” |“float”| <Type-Enumerated> |“string”
<Type-Enumerated> ::= <Identifier-Use>

2. Statements

<Astatement> ::= <An-H-Statement> | <Aassignment-Statement>
| <Loop-Statement> | <Exit-Statement> | <Return-Statement>
| <Read-Statement> | <Write-Statement>

| <Procedure-Call> | <Block-Structure>

166

<An-If-Statement> ::= “if* <Expression>“then” {<Astatement>}+

[{<Elsif-Statement>} [“else” {<Astatement>}+]]“end” “if”“”
<Elsif-Statement> ::= “elsif” <Expression> “then” {<Astatement>}+
<Aassignment-Statement> ::= <Variable-Use> “:=" <Expression> “;”

<Loop-Statement> ::= <Basic-Loop> | <For-Loop> | <While-Loop>

<Basic-Loop> ::= [<Identifier-Definition> “:”]

“loop” { <Astatement > } + “end” “loop” “;”

<For-Loop> ::= [<Identifier-Definition> “:”]
“for” <Identifier-Use> “in” <Expression> “.”“.” <Expression>

“loop” {<Astatement>}+“end” “loop” ;"

<While-Loop> ::= [<Identifier-Definition> “:”] “while”

<Boolean-Expression> “loop” {<Astatement>}+“end” “loop” “;”
<ExitStatement> ::= “exit” [<Identifier-Definition>]{“when” <Expression>]
<Read-Statement> ::= “read” “(” <Variable-Use>“)” “;”
<Write-Statement> ::= “write” “(” <Expression>“)” “”

(TR

<Return-Statement> ::= “return” <Expression>

<Block-Structure> ::= [<Identifier-Definition>“:”]{ “declare” <Declaration-Statement >}

“begin” {<Astatement>}+“end” [<Identifier-Definition>]“;”

<Procedure-Call> ::= <ldentifier-Use> “()” ;"

. Expressions

<Expression> ::= <Boolean-Expression> | <Arithmetic-Expression>

| <Afunction-Call> | <Variable-Use> | <Type-Conversion-Expression>

| <Literal-Constant> | <Emuneration-Expression>

167

<Boolean-Expression> ::= <Boolean-And> | <Boolean-Or>
| <Boolean-Not> | <Compare-Equal> | <Compare-Not-Equal>
| <Compare-Greater-Or-Equal> | <Compare-Greater-Than>

| <Compare-Less-Or-Equal> | <Compare-Less-Than>
<Boolean-And> ::= <Argument-1> and <Argument-2>
<Boolean-Or> ::= <Argument-1> or <Argument-2>
<Boolean-Not> ::= not“(” <Argument-1> ¢)”
<Compare-Equal> ::= <Argument-1> “=” <Argument-2>
<Compare-Greater-Or-Equal> ::= <Argument-1> “>=" <Argument-2>
<Compare-Greater-Than> ::= <Argument-1> “>” <Argument-2>
<Compare-Less-Or-Equal> ::= <Argument-1> “<=" <Argument-2>
<Compare-Less-Than> ::= <Argument-1> “<” <Argument-2>
<Compare-Not-Equal> ::= <Argument-1> “/=" <Argument-2>

<Arithmetic-Expression> ::= <Arithmetic-Add> | <Arithmetic-Subtract>
| <Arithmetic-Divide> | <Arithmetic-Modulo>
| <Arithmetic-Multiply> | <Arithmetic-Abs>

| <Arithmetic-Exponent> | <Unary-Plus> | <Unary-Minus>
<Arithmetic-Add> ::= <Argument-1> “4+” <Argument-2>
<Unary-Plus> ::= “4” <Argument-1>
<Unary-Minus> ::= “” <Argument-1>
<Arithmetic-Divide> ::= <Argument-1>“/” <Argument-2>
<Arithmetic-Modulo> ::= <Argument-1> mod <Argument-2>

<Arithmetic-Multiply> ::= <Argument-1> “*" <Argument-2>

168

<Arithmetic-Subtract> ::= <Argument-1> “-” <Argument-2>
<Arithmetic-Abs> ::= abs“(” <Argument-1> “)”

<Arithmetic-Exponent> ::= <Argument-1> “**” <Argument-2>
<Afunction-Call> ::= <Identifier-Use> “()”

<Variable-Use> ::= <Identifier-Use>

<Literal-Constant> ::= <Integer-Literal> | <Real-Literal> | <Boolean-Literal>
<Literal-Constant> ::= <False-Literal> | <True-Literal>

<Enumeration-Expression> ::= <Succ-Expression> | <Pred-Expression>

| <Char-Expression> | <Val-Expression>
<Succ-Expression> ::= <Identifier-Use> “’succ” “(” <Identifier-Use> «)”
<Pred-Expression> ::= <Identifier-Use> “’pred” “(” <Identifier-Use> “)”
<Char-Expression> ::= <Identifier-Use> “’char”
<Val-Expression> ::= <Identifier-Use> “’val” “(” <Expression> “)”
<Type-Conversion-Expression> ::= <Int-To-Float> | <Float-To-Int>
<Float-To-Int> ::= “integer”’“(” <Expression> “)”
<Int-To-Float> ::= “float”’“(” <Expression> “)”
. Literals and Identifiers
<Argument-1> ::= <Expression>
<Argument-2> ::= <Expression>
<Identifier-Definition> ::= <Name>
<Identifier-Use> ::= <Name>

<Integer-Literal> ::= integer

169

<Real-Literal> ::= real
<True-Literal> ::= “true”
<False-Literal> ::= “false”
<Constant-Flag> ::= “constant”

<Name> ::= symbol

170

B.1 OML with Ada PDL Domain Model

B.1.1 OML Domain Model

PYA ANV A N NN NS AN AN N Y YA YA AN NS NIV A AA VAN AN AN Y AN SR VAN SN SN NN AANA AN YA AN AT YA ARy N YA S

WAk
Wi
whh
Wi
Wi
WA
A
py43
wah
W%
whh
Y4

File-Name : dm.re

Authors :

(OML domain model)

Capt Mary Boom, Capt Brad Mallare

Purpose : This file builds the domain model to support the OML

architecture defined in Chapter 3 of our thesis.
types of constructs in this file:
maps and tree attribute definitionms.
the first part of this file and are written in an ISA type hierarchy.

pyad
143
py4s
P44
WA
WA

There are three main %%4%
Object class definitions, attribute %4%%
The object class are defined in %%%

Py

Attribute maps and tree attribue definitions are partitioned according %%%

to object type.

Ly

EAN YA IAA NSNS IANNIN S AY AN YA AN AN N AN AN A AN AN A NS AN NN NS YN AR NN VAN SN A AN AR NA A N A A A) 4]

*! in-package("RU")
!! in-~grammar(’user)

BURRRARAARALLLRLAAURAAARAAAAAALAUN OBIECT CLASSES UUUAANAALLUNAL AU U LA AR R A% AN A AN L%

var Specification-Object
var OML-Object

var

%%% The following objects match the objects required in the OML architecture

var
var
var
var
var
var
var
var
var
var
var
var
var
var
var
var

Informal-Model

Analysis-Object
Entity-object
Entity-Class
Entity-Instance
Process-Object
State-Object
Behavior-Object

Process-Desc-Lang

Pre-Post~Cond
Decision-~Table
Store-Object

Relationship-Object

Flow-Object

Event-Object

Relation-Table
Relation

: object-class

: object-class
: object-class
: object-class
: object-class
: object-class
: object-class
: object-class
: object-class
: object-class
: object-class
: object-class
: object-class
: object-class
: object-class
: object-class
: object-class

: object-class subtype-of user-object
: object-class subtype-of specification-object

subtype-of OML-Object

subtype-of OML-Object
subtype-of Analysis-Object
subtype-of Entity-Object
subtype-of Entity-Object
subtype-of Analysis-Object
subtype-of Analysis-Object
subtype-of Analysis-Object
subtype-of Behavior-Object
subtype-of Behavior-Object
subtype-of Behavior-Object
subtype-of Analysis-Object
subtype-of Analysis-Object
subtype-of Analysis-Object
subtype-of Analysis-Object
subtype-of Analysis-Object
subtype-of Relation-Table

%%% The folloving objects are needed for specifying Behaviors

var
var
var
var
var

var

DT-Components
Condition-Row
Condition-Entry
Action-Row
Action-Entry

PPC~Components

: object-class
: object-class
: object-class
: object-class
: object-class

: object-class

171

subtype-of OML-Object

subtype-of DT-Components
subtype-of DT-Components
subtype-of DT-Components
subtype-of DT-Components

subtype-of OML-Object

var

PPC-Statement

: object-class subtype-of PPC-Components

var %%% The following are necessary for specifying Entity attributes

Entity-Attributes

var
var

whh

var
var
var
var

User-Defined-Attr
User-Declared-Attr

The following are necessary for specifying

Attribute-Range
Integer-Range
Real-Range
Enumerated-Range

: object-class subtype-of OML-Object

: object-class subtype-of Entity-Attributes
: object-class subtype-of Entity-Attributes

the range of Entity attributes

: object-class subtype-of OML-Object

: object-class subtype-of Attribute-Range
: object-class subtype-of Attribute-Range
: object~class subtype-of Attribute-Range

%%4% The following are Expression objects

var

varxr
var
var
var
var
var
var
var
var
var
var
var
var

var
var
var
var
var
var
var

var
var
var
var
var
var

var
var
var
var
var
var

var

Expression

Boolean-expression
Boolean-And
Boolean-Not
Boolean-0r
Compare-Equal

: object-class subtype-of specification-Object

: object-class subtype-of expression

: object-class
: object-class
: object~class
: object~class

Compare-Greater-Or-Equal : object-class

Compare-Greater-Than
Compare-Less-0r-Equal

Compare-Less-Than
Compare-Not-Equal
Compare-In
Compare-For-All
Compare-Exists

Predicate-Range
R-Equal
R-Greater-Or-Equal
R-Greatexr-Than
R~Less-0r-Equal
R-Less-Than
R-Not-Equal

Arithmetic-expression
Arithmetic-Add
Arithmetic-Subtract
Unary-Minus
Arithmetic-Divide
Arithmetic-Multiply

Set-expression
Set-Union
Set-Diff
GetItem
GetSet
SetBuilder

Literal~Constant

: object~class
: object-class
: object-class
: object-class
: object-class
: object-class
: object-class

: object-class
: object-class
: object-class
: object-class
: object-class
: object-class

subtype-of boolean-expression
subtype-of boolean-expression
subtype-of boolean-expression
subtype-of boolean-expresaion
subtype-of boolean-expression
subtype-of boolean-expression
subtype-of boolean-erpression
subtype-of boolean-expression
subtype-of boolean-expression
subtype-of boolean-expression
subtype-of boolean-expression
subtype-of boolean-expression

: object-class subtype-of expression

subtype-of predicate-range
subtype-of predicate-range
subtype-of predicate-range
subtype~of predicate-range
subtype-of predicate-range
subtype-of predicate-range

: object-class subtype-of expression

: object-class subtype-of arithmetic-expression
: object-class subtype-of arithmetic-expression
: object-class subtype-of arithmetic-expression
¢ object-class subtype-of arithmetic-expression
: object-class subtype-of arithmetic-expression

: object-class subtype-of expression

: object-class subtype-of set-expression
: object-class subtype-of set-expression
: object-class subtype-of set-expression
: object-class subtype-of set-expression
: object-class subtype-of set-expression

: object-class subtype-of expression

172

var Integer-Literal : object-class subtype-of literal-Constant
var Real-Literal : object-class subtype-of literal-Constant
var Boolean-Literal : object-class subtype~of literal-Constant
var False-Literal : object-class subtype-of Boolean-Literal
var True-Literal : object-class subtype-of Boolean-Literal
var String-Literal : object-class subtype-of literal-Constant
var Symbol-Literal : object-class subtype-of literal-Constant
var Set-Literal : object-class subtype-of literal-Constant
var Sequence-Literal : object-class subtype-of literal-Constant
var Variable-Use : object-class subtype-of expression

var Identifier-Use : object-class subtype-of Variable-Use
%4% The following are Statement objects

var Statement : object-class subtype-of OML-object

var Assignment-Statement : object-class subtype-of Statement

var Function-Call : object-class subtype-of Statement

var Create : object-class subtype-of Function-Call
var Destroy : object-class subtype-of Function-Call
var Display : object-class subtype-of Function-Call

%%4% These object classes represent the declared variables

var
var

Identifier
Identifier-Def

: object-class
: object-class

subtype-of
subtype-of

OML-object
identifier

%%% These object classes represent the legal variable types

var Var-Type : object-class subtype-of specification-Object
var Type-boolean : object-class subtype-of var-type
var Type-integer : object-class subtype-of var-type
var Type-real : object-class subtype-of var-type
var Type-set : object-class subtype-of var-type
var Type-sequence : object-class subtype-of var-type
var Type~string : object-class subtype-of var-type
var Type-symbol : object-class subtype-of var-type

var Flow-Type
var Flow-PP
var Flow-PS
var Flow-SP
var Flow-PE
var Flow-EP

: object-class subtype-of OML-Object
: object-class subtype-of flow-type
: object-class subtype-of flow-type
: object~class subtype-of flow-type
: object-class subtype-of flow-type
: object-class subtype-of flow-type

var Cardinality-Type : object-class subtype-of OML-Object

var One-Many : object-class subtype-of cardinality-type
var One-One : object-class subtype-of cardinality-type
var Many-Many : object-class subtype-of cardinality-type
var Many-One : object-class subtype-of cardinality-type

TARKRAALANLLAAAAURAAAAN% LY ANALYSIS-0BJECT-ATTRIBUTES %XXAAAUNAAAANNALL AN LLAANY

var CONSTRAINTS-MAP

: map(Analysis-Object, seq(Expression)) = {li}

var DEFINED-NAME : map(Specification-Object, Identifier-Def) = {||}

173

var NAME-USE : map(OML-object, Identifier-use) = {I1}

var NAME-USES : map(specification-Object,

seq(Identifier-use)) = {11}
var VALUE-MAP : map(OML-Object, Literal-Constant) = {I1}
var VARIABLE-TYPE : map(OML-Object, Var-Type) = {I1}
var ANALYSIS-0BJ-MAP : map(OML-Object, set(Analysis-Object)) = {||}

form ANALYSIS-OBJECT-ATTRIBUTES

define-tree-attributes (’ Informal-Model, {’Defined-Name,
’Analysis-0bj-Map})

ARAARAARARUARAAA AR LALAAAYL A% EXPRESSION-ATTRIBUTES %A%AAUARAAAALAANK AL AL LA LAY

var ARGUMENT-1 : map(expression, expression) = {1}
var ARGUMENT-2 : map(expression, expression) = {|1}
var ARGUMENT : map(predicate-range, expression) = {]1}
var SET~ARG : map(expression, set(boolean-expression)) = {|I}
var SET-DIFF-CONDITION : map(set-expression, seq(expression)) = {I1}
var SETBUILDER-MAP : map(set-expression, setbuilder) = {|I}
var INTEGER-VALUE-OF : map(Integer-Literal, Integer) = {|1}
var REAL-VALUE-OF : map(Real-Literal, Real) = {lI1}
var STRING-VALUE-OF : map(String-Literal, String) = {|1}
var SYMBOL-VALUE-OF : map{Symbol-Literal, Symbol) = {|I}

ARAARLRRAARAAAXUNREARARAAANUAALY, ENTITY-ATTRIBUTES %UAANAAANUUAUNAUAALNLRALLLALY

var ENTITY-USER-DECL-MAP : map(Entity-Object, seq(User-Declared-Attr)) = {}|}
var ENTITY-USER-DEF-MAP : map(Entity-Object, seq(User-Defined-Attr)) = {[I}
var EXTERNAL-ENTITY : map(Entity-Object, Boolean) ={||}

form ENTITY-O0BJECT-ATTRIBUTES

define-tree-attributes(’Entity-Class, {’Defined-Name,
’External-Entity,
’Entity-User-Decl-Map,
’Constraints-Map});

define-tree-attributes(’Entity-Instance, {’Defined-Name,
’Entity-User-Decl-Map,
’Name-Use,
’Entity-User-Def-Map,
’External-Entity,
’Constraints-Map})

RARLARARAARAARAARRAALAAN%R% USER-DECLARED-ATTRIBUTES {%X%A%AXANAAAAAUNLALAARLNXA%Y

var USER-DECL-ATTR-TYPE : map(User-Declared-Attr, Var-Type) = {1}
var RANGE-ATTRIBUTE : map(OML-Object, Attribute~Range) = {|1}
var ENUM-RANGE-MAP : map(Enumerated-Range, set(symbol)) = {|1}
var INTEGER-HIGH-MAP : map(Integer-Range, Integer) = {|1}
var INTEGER- LOW-MAP : map(Integer-Range, Integer) = {I1}
var REAL-HIGH-MAP : map(Real-Range, Real) = {|1}
var REAL-LOW-MAP : map(Real-Range, Real) = {11}
var SYMBOL-VAL : map(Entity-Attributes, Symbol) = {1}

174

form USER-DECLARED~ATTRIBUTES

define-tree-attributes (’User-Declared-Attr, {’Defined-Name,
’User-Decl-Attr-Type,
’Range-Attribute,
’Value-Map,
’Symbol-Val});

define~tree-attributes (’User-Defined-Attr, {’Name-Use,
’Value~Map,
’Symbol-Vall});

define-tree-attributes (’Enumerated-Range, {’enum-range-map});

define-tree-attributes(’Integer-Range, {’integer-low-map,

’integer-high-map});

define-tree-attributes(’Real-Range, {’real~low-map,
’real~high-map})

|

| RRABAAARLARARRARARANARRARAARAA PROCESS-ATTRIBUTES AAAAAARAAAAARAAAALLRALARLAUALLL
|
‘ form PROCESS-0BJECT-ATTRIBUTES

define-tree-attributes(’Process-Object, {’Defined-Name,
| ’Constraints-Map})

WARAAAAAAAAAAAANAUAAAANAAAAN%Y, STATE-ATTRIBUTES %AUANAUUAAAAAAR AN UALUUALAARAANLY
var STATE-SPACE-MAP : map(State-Object, set(expression)) = {11}
form STATE-OBJECT-ATTRIBUTES
define-tree-attributes(’State-Object, {’Defined-Name,
'State-Space-Map,

*Constraints-Map})

RALAAAAALLLLAAARAAAAAAAUUL LS BEHAVIOR-ATTRIBUTES %A%UNARAAARAUAAAUALLAAALLLAAL

var BEHAVIOR-PPC-MAP : map(Pre-Post-Cond, seq(PPC-Statement)) = {{}
var PDL-MAP : map(Process-Desc-Lang, Procedure-Declaration) = {][}
var PPC-PRE-MAP : map(PPC-Statement, seq(Expression)) = {l|}
var PPC-POST-MAP : map(PPC-Statement, seq(Statement)) = {I}
var PPC-EVERT-MAP : map(PPC-Statement, Identifier-Use) = {|}
var DT-COND-ROW-MAP : map{Decision-Table, seq(Condition-Row)) = {l1}
var DT-ACTION-ROW-MAP : map(Decision-Table, seq(Action-Row)) = {l1}
var DT-EVENT-MAP : map(Decision-Table, seq(Identifier-Use)) = {l1}

var CONDITION-ENTRY-MAP : map(Condition-Row, seq(Condition-Entry)) = {11}
var CONDITION-RANGE : map(Condition-Entry, Predicate-Range) = {|I}
%var CORDITION-VALUE : map(Condition-Entry, Literal-Constant) = {11}

175

var DONT-CARE-VALUE : map(Condition-entry, Boolean) = {||}

var ACTION-ENTRY-MAP : map(Action-Row, seq(Action-Entry)) = {{1}
var ACTION-VALUE : map(Action-Entry, Literal-Constant) = {|{}
var ACTION-EXPR : map(Action-Entry, Arithmetic-expression) = {|1}

form BEHAVIOR-0BJECT-ATTRIBUTES

define-tree-attributes (’Pre-Post-Cond, {’Defined-Name,
’Behavior-PPC-Map,
’Constraints-Map});

define-tree-attributes(’PPC-Statement, {’PPC-Pre-Map,
’PPC-Post-Map,
’PPC-Event-Map}) ;
define-tree-attributes(’Process-Desc-Lang, {’Defined-Name,
’PDL-Map,
’Constraints-Map});

define-tree-attributes(’Condition-Row, {’Name-Use, ’condition-entry-map});

define-tree-attributes(’Action-Row, {’Name-Use, ’action-entry-map});

define-tree-attributes(’Condition-Entry, {’condition-range.
’dont-care-value,
‘name-use}) ;

define-tree-attributes(’Action-Entry, {’action-value,
‘name-use,
’action-exprl});

define-tree-attributes(’Decision-Table, {’Defined-Name,
’DT-Cond-Row-Map,
’DT-Action-Row-Map,
’DT-Event-Map,
’Constraints-Map})

RRRRARAARLAURAALAAANAANAKLAU%Y, STORE-ATTRIBUTES AUANNUANRUANLUALAAUANUNXLALALL

var NATURE-SET-MAP : map(Store-Gbject, boolean) = {11}
var CONTENT-NAME : map(Store-Object, Identifier-Use) = {I1}
var KiY-NAME : map(Store-Object, Identifier-Use) = {}1}
var ORDER-SET-MAP : map(Store-Object, boolean) = {1}

form STORE-OBJECT-ATTRIBUTES
define-tree-attributes(’Store-0Object, {’Defined-Name,
’Nature-Set-Map,
’Content-Name,
’Key-Name,
’Order-Set-Map,
’Constraints-Map})

AUAARAALAAAARAAALLLAAAA AL RELATIONSHIP-ATTRIBUTES %AXXAAAAANLAANAANARLAAALL LAY

var REL-TYPE-MAP : map(Relationship-Object, symbol) = {11}
var CARDINALITY-MAP : map(Relationship-Object, cardinality-type) = {i|}

176

form RELATIONSHIP-OBJECT-ATTRIBUTES
define-tree-attributes(’Relationship~-Object, {’Defined-Name,
’Rel-Type-Map,
’Cardinality-Map,
’Constraints-Map})

AAAAAAAALANADARAAAAANARAAALYL FLOW-ATTRIBUTES RAANANANARALAAURARAANARRALRAAARAALY

var FLOW-LINK-MAP : map(Flow-Object, flow-type) = {I1}
var FLOW-DATA-MAP : map(Flow-Object, identifier—use) = {11}

form FLOW-OBJECT-ATTRIBUTES
define-tree-attributes(’Flow-Object, {’Defined-Name,
’Flow-Link-Map,
’Flow-Data-Map,
’Constraints-Map})

RALURALRARLAAAAR AL NAAA AN ALY EVENT-ATTRIBUTES AUNANAUANURAUE LR A AU AU A AU A AUALL LY

var EVENT-TYPE : map(Event-Object, boolean) =
var EVENT-PRIORITY : map(Event-Object, integer) =

form EVENT-OBJECT-ATTRIBUTES
define-tree-attributes(’Event-Object, {’Defined-Name,
’Event-Type,
’Event-Priority,
’Constraints-Map})

WRRRARTRLRAULLARALARUAAA%Y, RELATION-TABLE-ATTRIBUTES %AXXALNANAAALAAAARAALALL LAY

var RELATION-SEQUENCE : map(Relation-Table, seq(Relation)) = {|1}
var FROM-OBJ-MAP : map(Relation, Identifier-Use) = {|1}
var ASSOC-OBJ-MAP : map(Relation, Identifier-Use) = {ii}
var TO-0BJ-MAP : map(Relation, Identifier-Use) = {I}}

form RELATION-TABLE-ATTRIBUTES
define-tree-attributes(’Relation-Table, {’Defined-Name,
’Relation-Sequence,
’Constraints-Map});
define-tree-attributes(’Relation, {’From-0bj-Map,
’Assoc-0bj-Map,
’To~0bj-Map})
ARRARBARRARRRAAANAARARAALAAAL LY, ASSTIGRMENT-STATEMERTS %U%ALAUUARANALALAALULANLYL

var LHS : map(Assignment-Statement, variable-use) = {11}
var RHS : map(Assignment-Statement, expression) = {|]}

form ASSIGNMENT-STATEMENT-ATTRIBUTES
define-tree-attributes(’Assignment-Statement, {’LHS, ’RHS})

TRRRDALARRRARRRRRARAALAARLA R, FURCTION-CALLS %AAAAAAXAANAARAALAAALXAAA A XALL K%Y

var DISPLAY~-SET : map(display, set-expression) = {l1}

177

form FUNCTION-CALL-ATTRIBUTES
define-tree-attributes(’Create, {’defined-name, ’name-use});
define-tree-attributes (’Destroy, {’name-usel});

define-tree-attributes(’Display, {’name-use, ’display-set})

178

B.1.2 Ada PDL Domain Model

{1 in-package("ru")
!! in-grammar(’user)
var Specification-Object : object-class subtype-of user-object

var Ada-Syntactic-Object : object-class subtype-of specification-object

var Procedure-declaration : object-class subtype-of ada-syntactic-object
var Function-declaration : object-class subtype-of ada-syntactic-object
var ABlock : object-class subtype-of ada-syntactic-object
var Declaration-statement : object-class subtype-of ada-syntactic-object
var Variable-declaration : object-c'ass subtype-of declaration-statement
var Enumerated-declaration : object-class subtype-of declaration-statement
var Subprogram-declaration : object-class subtype-of declaration-statement
var Var-Type : object-class subtype-of specification-object
var Type-boolean : object-class subtype-of var-type
var Type-integer : object-class subtype-of var-type
var Type-float : object-class subtype-of var-type
var Type-enumerated : object-class subtype-of var-type
var Type-string : object-class subtype-of var-type
var Constant-flag : object-class subtype-of ada-syntactic-object
var Expression : object-class subtype-of specification-object

var Boolean-expression : object-class subtype-of expression

var Boolean-And : object-class subtype-of boolean-expression
var Boolean-Not : object-class subtype-of boolean-expression
var Boolean-0r : object-class subtype-of boolean-expression
var Compare-Equal : object-class subtype-of boolean-expression
var Compare-Greater-Or-Equal : object-class subtype-of boolean-expression
var Compare-Greater-Than : object-class subtype-of boolean-expression
var Compare-Less-0Or-Equal : object-class subtype-of boolean-expression
var Compare-Less-Than : object-class subtype-of boolean-expression
var Compare-Not-Equal : object-class subtype-of boolean-expression

var Arithmetic-expression : object-class subtype-of expression

var Arithmetic-Add : object-class subtype-of arithmetic-expression
var Arithmetic~-Subtract : object-class subtype-of arithmetic-expression
var Arithmetic-Divide : object-class subtype-of arithmetic-expression
var Arithmetic-Modulo : object-class subtype-of arithmetic-expression
var Arithmetic-Multiply : object-class subtype-of arithmetic-expression
var Arithmetic-Abs : object-class subtype-of arithmetic-expression
var Unary-Plus : object-class subtype-of arithmetic-expression
var Unary-Minus : object-class subtype-of arithmetic-expression
var Arithmetic-Exponent : object-class subtype-of arithmetic-expression

var AFunction-call : object-class subtype-of expression

var Variable-Use : object-class subtype-of expression

var Identifier-Use : object-class subtype-of Variable-Use
var Literal-Constant : object-class subtype-of expression

var Integer-Literal : object-class subtype-of literal-Constant
var Real-Literal : object-class subtype-of literal-Constant

179

var
var
var

var
var
var
var
var

var
var
var

var
var
var
var
varxr
var
var
var
var
var
var
var
var
var

var
var

Boolean-Literal : object-class subtype-of literal-Constant
False-Literal : object-class subtype-of Boolean-Literal
True-Literal : object-class subtype-of Boolean-Literal

Enumeration-expression :
Succ-expression
Pred-expression
Char-expression

Val-expression

Type-conversion-expression

int-to-float
float-to-int

AStatement
An-If-Statement

Elsif-statement
AAssignment-statement

Loop-statement
Basic-Loop
For-Loop
While-Loop

Exit-statement

Read-statement

rite-statement

Return-statement

Block-structure

Procedure-Call

Aldentifier

Identifier-Definition

RARRARLAARLRDALARANLAANY,

var
var
var
var

var
var

ADEFINED-NAME
BDEFINED-NAME
U~-NAME
ADEFINED-NAMES

EXPRESSION-VALUE
EXPRESSION-LIST

object-class subtype-of
: object-class subtype-of
: object-class subtype-of
: object-class subtype-of
: object-class subtype-of

expresgion

enumeration-expression
enumeration-expression
enumeration-expression
enumeration-expression

: object-class subtype-of expression
: object-class subtype-of Type-conversion-expression
: object-class subtype-of Type-conversion-expression

: object-class
: object-class
: object-class
: object-class
: object-class
: object-class
: object-class
: object-class
: object-class
: object-class
: object-class
: object-class
: object-class
: object-class

subtype-of
subtype-of
subtype-of
subtype-of
subtype-of
subtype-of
subtype-of
subtype-of
subtype-of
subtype-of
subtype-of
subtype-of
subtype-of
subtype-of

ada-syntactic-object
astatement
ada-syntactic-object
astatement
astatement
loop-statement
loop-statement
loop-statement
astatement
astatement
astatement
astatement
astatement
astatement

: object-class subtype-of
: object-class subtype-of

ada-syntactic-object
aidentifier

ADA-SYNTACTIC-0BJECT-ATTRIBUTES %AXXANARAAAKALAALAAUAAL

: map(ada-syntactic-object, identifier-definition) = {||}
: map(specification-object, identifier-definition) = {||}
: map(identifier-definition, string)
: map(ada-syntactic-object, seq(identifier-definition))

= {l1}

= {|}
: map(specification-object, expression) = {lI}
: map(ada-syntactic-object, seq(expression)) = {l1}

form U-NAME-TREE-ATTRIBUTES
define-tree-attributes(’identifier-use, {’u-name})

ARARARARNAAANAAALL A%, PROCEDURE AND FUNCTION-DECLARATION %¥XAUAUXAAUAAXAUNAAUNLLY

var BLOCK-MAP

var

AVARIABLE-TYPE

: map(ada-syntactic-object, ablock)

: map(ada-syntactic-object, var-type)

= {l1}
= {11}

form PROCEDURE-DECLARATION-TREE-ATTRIBUTES
define-tree-attributes(’procedure-declaration, {’adefined-name,

’block-mapl});

180

define-tree-attributes(’function-declaration, {’adefined-name,
’avariable-type,
’block-map})

RARRRRRRRARRAARAAKLARLAARLAXAAAANL BLOCKS RAXAAAAANAANNAAAANARN KA AR RNAA NN RA A AN AL

var DECLARATION-PART : map(ada-syntactic-object,
seq(declaration-statement)) = {]|}

var STATEMENT-SEQUENCE : map(ada-syntactic-object, seq(Astatement)) = {||}
form ABLOCK-TREE-ATTRIBUTES
define-tree-attributes(’ablock, {’declaration-part,
’statement-sequence,
’bdefined-name})

RARAARALAAURARAANAAANALA N A%, DECLARATION-STATEMENTS %A%NNNANAKAANUXAUANANAURAALNLY

var VARIABLE-DECLARATION-MAP : map(declaration-statement,

variable-declaration) = {l1}
var ENUMERATED-DECLARATION-MAP : map(declaration-statement,
enumerated-declaration) = {|1}
var SUBPROGRAM-DECLARATION-MAP : map(declaration-statement,
subprogram-declaration) = {I1}
var SUBPROG2PROC-DECL : map(subprogram-declaration,
procedure-declaration) = {i1}
var SUBPROG2FUNC-DECL : map(subprogram-declaration,
function-declaration) = {{I}
var CONSTANT-OPTION : map(variable-declaration, constant-flag) = {||}
var ENUMERATED-SYMBOL-MAP : map(type-enumerated, identifier-use) = {}1}

form DECLARATION-STATEMENT-TREE-ATTRIBUTES
define-tree-attributes(’declaration-statement, {’variable-declaration-map,
’enumerated-declaration-map,
’subprogram-declaration-map});

define-tree-attributes(’variable-declaration, {’adefined-name,
’constant-option,
’avariable-type,
’expression-value});

define-tree-attributes(’enumerated-declaration, {’adefined-name,
’adefined-names});

define-tree-attributes(’subprogram-declaration, {’subprog2proc-decl,
’subprog2func-decl})

RARRRARRRARARAARARAANAAANALLLAAL EXPRESSIONS RAANNANAANLRAARAAAANNNLANALANNAANLYL

var ARGUMENT-1: map(expression, expression) = {||}
var ARGUMENT-2: map(expression, expression) = {||}
var BOOLEAN-EXPRESSION-VALUE: map(ada-syntactic-object, boolean-expression)

= {I1}
)

181

%%% Boolean expressions

*A

form BOOLEAN-TREE-ATTRIBUTES
define-tree-attributes(’boolean-and, {’argument-1, ’argument-2});
define-tree-attributes(’boolean-not, {’argument-1});
define-tree-attributes(’boolean-or, {’argument-1, ’argument-2});
define-tree-attributes(’compare-equal, {’argument-1, ’argument-2});
define-tree-attributes(’compare-greater-or-equal, {’argument-1i,
’argument-2}) ;
define-tree-attributes(’compare-greater-than, {’argument-1, ’argument-2});
define-tree-attributes(’compare-less-or-equal, {’argument-1, ’argument-2});
define-tree-attributes(’compare-less-than, {’argument-1, ’argument-2});
define-tree-attributes(’compare-not-equal, {’argument-1, ’argument-2})

Wi
%%% Arithmetic expressions
Wi

form ARITHMETIC-TREE-ATTRIBUTES
define-tree-attributes(’unary-plus, {’argument-1});
define-tree-attributes(’unary-minus, {’argument-1});
define-tree-attributes(’arithmetic-add, {’argument-1, ’argument-2});
define-tree-attributes(’arithmetic-divide, {’argument-1, ’argument-2});
define-tree-attributes(’arithmetic-modulo, {’argument-1, ’argument-2});
define-tree-attributes(’arithmetic-multiply, {’argument-1, ’argument-2});
define-tree-attributes(’arithmetic-subtract, {’argument-1, ’argument-2});
define-tree-attributes(’arithmetic-abs, {’argument-1}});
define-tree-attributea(’arithmetic-exponent, {’argument-1, ’argument-2})

%A%
%A% Function-call
%%

var ANAME-USE : map(specification-object, identifier-use) = {||}

form FUNCTION-CALL-TREE-ATTRIBUTES
define-tree-attributes (’afunction-call, {’aname-use})

L%

%%% Literal-Integer

141

var INTEGER-VALUE-OF : map(integer-literal, integer) = {l1}
%h%

%%% Literal-Float

%%

var REAL-VALUE-OF : map(real-literal, real) = {11}
A%

%%% Enumeration-expressions

A%

182

var ENUMTYPE-NAME : map(Enumeration-expression, identifier-use) = {||}

form ENUMERATION-EXPRESSION-TREE-ATTRIBUTES
define-tree-attributes(’succ-expression, {’enumtype-name,’aname-use});
define-tree-attributes(’pred-expression, {’enumtype-name,’aname~use});
define-tree-attributes(’val-expression, {’enumtype-name,’expression-value});
define-tree-attributes(’char-expression, {’aname-use})

A%
%%% Type-Conversion-Expressions

A3

form TYPE-CONVERSION-TREE-ATTRIBUTES
define-tree-attributes(’float-to-int, {’expression-value});
define-tree-attributes(’int-to-float, {’expression-value})

RAARAAAAAARAAUALLAALAAUUUAL ALY STATEMENTS AUAAAARALAANARLLU N AL AAAA LA AL LANA AL N

var STATEMENT-BODY : map(astatement, astatement) = {1}
A%

%%% If-Statement

W%

var THEN-PART : map(an-if-statement, seq(astatement)) = {{|}
var ELSIF-PART : map(an~if-statement, seq(elsif-statement)) = {lI}
var ELSE-PART : map(an-if-statement, seq(astatement)) = {1}
var ELSIF-STATEMENTS : map(elsif-statement, seq(astatement)) = {1}
var TEST-CONDITION : map(an-if-statement, expression) = {l1}
var ELSIF-TEST-CONDITION : map(elsif-statement, expression) = {1}

form IF-STATEMERT-TREE-ATTRIBUTES
define-tree-attributes(’an-if-statement, {’test-condition,
*then-part,
‘elsif-part,
’else-part });

define-tree-attributes(’elsif-statement, {’elsif-test-condition,
‘elsif-statements})

%
%%% Assignment-Statement
%A%

var ALHS : map(aassignment-statement, variable-use) = {11}

form STATEMENT-TREE-ATTRIBUTES
define-tree-attributes(’aassignment-statement, {’alhs, ’expression-valuve})

%%%
%%% Loop~-Statements

183

A%%

var LOOP-ID : map(Loop-statement, identifier-definition) = {|[}
var EXIT-MAP : map(basic-loop, exit-statement) = {l1}
var LOOP-STATEMENT-SEQUENCE : map(loop-statement, seq(astatement)) = {{1}
var LOOP-BOOLEAN-EXP : map(while-loop, boolean-expression) = {]1}
var START-RANGE : map(for-loop, expression) = {1}
var END-RANGE : map(for-loop, expression) = {{1}

form LOOP-STATEMENT-TREE-ATTRIBUTES
define-tree-attributes(’basic-loop, {’loop-id,
*loop-statement-sequence}) ;

define-tree-attributes(’for-loop, {’loop-id,
’aname-use,
’start-range,
’end-range,
’loop-statement-sequence});

define-tree-attributes(’while-loop, {’loop-id,
’loop-boolean-exp,
’loop-statement-sequence})

A%

%%% Exit-Statement

pAAA

var EXIT-ID : map(Exit-statement, identifier-definition) = {||}

form EXIT-STATEMENT-TREE-ATTRIBUTES
define-tree-attributes(’exit-statement, {’exit-id, ’expression-value})

X%

%%% Read and Write-Statment

L%

var READ-VALUE : map(Read-statement, variable-use) = {11}
var WRITE-EXPRESSION : map(Write-statement, expression) = {11}

form I0-TREE-ATTRIBUTES
define-tree-attributes(’Read-statement, {’read-value});
define-tree-attributes(’Write-statement, {’write-expression})

%4%
%%% Return-Statment
%h%

form RETURN-STATEMENT-TREE-ATTRIBUTES
define-tree-attributes(’return-statement, {’expression-value})

%%%
%%% Block-Structure
A4%

form BLOCK-STRUCTURE-TREE-ATTRIBUTES
define-tree-attributes(’Block-structure, {’adefined-name,

184

’declaration-part,
'statement-sequence,
’adefined-name})

X%%
%%4% Procedure-call
%

form PROCEDURE-CALL-TREE-ATTRIBUTES
define-tree-attributes(’Procedure-call, {’aname-use})

185

B.2 OML with Ada PDL Grammar
B.2.1 OML Grammar

EAAYAANAN NS AN A A S AN Ny AN VAR NN AR NN N AN S AR A AN AN AN NN NAANY VAN TN I VAN AN SN AN TS VY4 N

Py py 3
%%% File-Name : oml-gm.re (OML grammar productions) %%%
A% by 44
%%4% Authors : Capt Mary Boom, Capt Brad Mallare %%
W% X%

%%% Purpose : This file builds the productions that define the grammar %%%
Y44 for an OML specification. When parsing OML specifications, these %A%

W productions ensure that the specifications satisfy the syntax %h%
%%4% requirements defined in the OML BAF. X4%
wh% AR%

PYNSYANAAAN AN YA NSNS AN A NS AN A AN AN A AR YA A AN N AN AR AN IANA RS NS IS NTINAN IS NS I T I ENN N AS

1! in-package("ru")
‘! in-grammar(’syntax)

grammar OML
inherits-from AdaCs
start-classes informal-model
file-classes informal-model
productions
informal-model ::=
["specification" defined-name analysis-obj-map + ""]

builds informal-model,

TRRARAAARAARAAAAALKAALALAN% ENTITY OBJECT PRODUCTIONS XARAAAAAANAAAANARAANAALAAL,

entity-class ::=
[defined-name "class-of" "entity"

"type" ":" (["external" !! external-entity] | "internal")
{["parts" entity-user-decl-map + ";"]}
{["constraints" constraints-map + ";" 1}]

builds entity-class,

entity-instance ::=
[defined-name "instance-of"

([Mentity"
"type" ":" (["external" !! external-entity] | "internal")
{["parts” entity-user-decl-map + ";"1}]
| [name-use
{[{"values" entity-user-def-map + ";"1}]
)

{["constraints" constraints-map + ";"]1}]
builds entity-instance,

AARARAARAAARAANLUAANLAL USER-DECLARED-ATTRIBUTE-PRODUCTIONS XXAXAAXAARAXAXAAXANAL

user-declared-attr ::=

186

[defined-name ":" variable-type
{["range" "{" range-attribute "}"]}
{["init-val" (value-map | symbol-val)l}]
builds user-declared-attr,

user-defined-attr ::=
[name~use ":" (value-map | symbol-val)]
builds user-defined-attr,

enumerated-range ::=
[enum-range-map + ","]
builds enumerated-range,

integer-range ::=
[integer-low-map "." "." integer-high-map]
builds integer-range,

real-range ::=
[real-low-map "." "." real-high-map]
builds real-range,

AAAAAAAAAAAAAAALLLLAAALY PROCESS OBJECT PRODUCTIONS AAAAUANAAAAUNARARAAAAARAALL

process-object ::=
[defined-name "instance-of" "process"
{["constraints" constraints-map + ";"1}]
builds process-object,

AARKLAAARUARAANLLLAAAUL LY STATE OBJECT PRODUCTIONS AAUAARAAURKAAAAAARAAXALALNYS

state-object ::=
[defined-name "inatance-of'" "state"
"state-space”" ":" state-space-map + ";"
{["constraints" constraints-map + ";"]}]
builds state-object,

ARAAARRAARAAAANAAAAA%%Y% BEHAVIOR OBJECT PRODUCTIONS RANAAAAANANXAAAAXNRLAAAAAANAL

decision-table ::=
[defined-name "instance~of" "behavior"

[dt-cond-row-map + ";"] '"'-->"

{[dt-action-row-map + ";" 1}

["event" ","” dt-event-map + ","]
{["constraints" constraints-map + ";" 1}]

builds decision-~table,

condition-row ::=
[name-use "," condition-entry-map + ","]
builds condition-row,

action-row ::=
[name-use "," action-entry-map + ","]

builds action-row,

% Name use in the next production allows us to have symbols such as ’safe and
% ’unsafe in the decision tables. It is not a pure use of the map name-use.

187

condition-entry ::=
[(["dont~care" !! dont-care-value] | condition-range | name-use)]
builds condition-entry,

action-entry ::=
[(action-value | name-use | action-expr)]
builds action-entry,

pre-post-cond ::=
[defined-name "instance-of" "behavior"
behavior-ppc-map + ";"
{["constraints" constraints-map + ";"1}]
builds pre-post-cond,

ppc-statement ::=
[ppc-pre-map + "&" "-->" {[ppc-post-map + "&"1}
"event' ppc-event-map]
builds ppc-statement,

process-desc~lang ::=
[defined-name "instance-of" "behavior" pdl-map
{["constraints" constraints-map + ";"]}]

builds process-desc-lang,

AAARARAAAALARAAAALLAALY STORE OBJECT PRODUCTIONS AAARAARRALARAAANAKARANLLANE

store-object ::=
{defined-name "instance-of" "store"

"nature" ":" (["set" !! nature-set-map] | "sequence")
“content" ":" content-name

.((nkeyn 1) . n key-nane] }

{{"order" ":"(["ascending" !! order-set-map] | "descending")l}
{["constraints" constraints-map + ";"]}]

builds store-object,
RARARAAAAAAALLLLLAY, RELATIONSHIP OBJECT PRODUCTIONS AAXKAAAAAAAARRARALAANL

relationship-object ::=
[defined-name "instance-of" "relationship”
"type" ":" rel-type-map
"cardinality" ":" cardinality-map
{["constraints” constraints-map + ";"]}]
builds relationship-object,

ARARRAAANAARAAAAAAAXAAYN FLOW OBJECT PRODUCTIONS AAAAXAAAAARANRAARAALARAANLK

flow-object ::=
[defined-name "instance-of" "“flow"

"flow-link" ":" flow-link-map
"flo'_data" ":" flo'_data_-ap
{["conatraints" constraints-map + ";"]1}]

builds flow-object,

KALAAALAAAAARAAAAAAN%LLY EVENT OBJECT PRODUCTIONS AXAANANRAAXRANRANRRARANNRARS

188

event-object ::=
[defined-name "instance-of" "event"
"type" ":" (["internal" !! event-type]l | "external")
{["priority" ":" event-priorityl}
{["constraints" constraints-map + ";"]}]
builds event-object,

RAAAUUAAAAARAA %% %% %% RELATION-TABLE OBJECT PRODUCTIONS %%UNUAAAANXAANAAAANA%Y
relation-table ::=
[defined-name "instance-of' "relation-table"
relation-sequence + ";"
{["constraints" constraints-map + ";"]}]
builds relation-table,
relation ::=
[from-obj-map "," assoc-obj-map "," to-obj-map]
builds relation,

AAXAAAALAXAAAALA AL %A% IDENTIFIER OBJECT PRODUCTIONS XXANXANAARAXANULAAANLLLYL

identifier-def ::= [name]
builds identifier-def,

identifier-use ::= { name]
builds identifier-use,

AUARARAARARARARAAAAALY LITERAL CONSTANT PRODUCTIONS AAXXXXAAXAXAXAAXLLALANLN

integer-literal ::= [integer-value-of]
builds integer-literal,

real-literal ::= [real-value-of]
builds real-literal,

true-literal ::= ["true"]
builds true-literal,

false-literal ::= ["false"]
builds false-literal,

string-literal ::= [string-value-of]
bui. -'s string-literal,

ARARRAARARRLARAAAALAAAAL%Y VARIABLE TYPE PRODUCTIONS %%%AXUXAXAXAXAXLXANNLALLY

type-boolean ::= ["boolean"]
builds type-boolean,

type-string ::= ["string"]
builds type-atring,

type-symbol ::= ["symbol"]
builds type-symbol,

189

type-integer ::= ["integer"]
builds type-integer,

type-real ::= ["real"]
builds type-real,

type-set ::= ["set"]
builds type-set,

type-sequence ::= ["sequence"]
builds type-sequence,

KALAAXAAARARAARLLAAAAXAUALLLLYL FLOW TYPE PRODUCTIONS AAXXAAAAARARNARARARAALNAALN

flow-pp ::= ["proc-proc”]
builds flow-pp,

flow-ps ::= ["proc-store"]
builds flow-ps,

flow-sp ::= ["store-proc"]
builds flow-sp,

flow-pe ::= ["proc-entity"]
builds flow-pe,

flow-ep ::= ["entity-proc"]
builds flow-ep,

AAAALAARALLLLAUALAARNALAAL LY CARDINALITY TYPE PRODUCTIONS AAAURRRXARXAAARRAAXANA

One-Many ::= ["i-n"]
builds One-Many,

One-One ::= ["1-1"]
builds One-One,

Many-One ::= ["m-1"]
builds Many-One,

Many-Many ::= ["m-m"]
builds Many-Many,

AAAALALAXAAXAAALLLAAXAAL ALY EXPRESSION PRODUCTIONS AAXAANXAARURUNNALLLAANANLAY
%%% Arithmetic Expressions %%%
arithmetic-add ::= [argument-1 "+" argument-2] builds arithmetic-add,
unary-minue ::= ["-" argument-1] builds unary-minus,

arithmetic-divide ::= [argument-1 "/" argument-2]
builds arithmetic-divide,

arithmetic-multiply ::= [argument-1 "»" argument-2]
builds arithmetic-multiply,

190

arithmetic-subtract ::= [argument-1 "-" argument-2]
builds arithmetic-subtract,

%%% Boolean Expressions %%

boolean-and ::= [argument-1 "and" argurent-2]
builds boolean-and,

boolean-not ::= ["not" argument-1]
builds boolean-not,

boolean-or ::= [argument-1 "or" argument-2]
builds boolean-or,

compare-equal ::= [argument-1 "=" argument-2]
builds compare-equal,

compare-greater-or-equal ::= [argument-1 ">=" argument-2]
builds compare-greater-or-equal,

compare-greater-than ::= [argument-1 ">" argument-2]
builds compare-greater-than,

compare-less-or-equal ::= [argument-1 "<=" argument-2]
builds compare-less-or-equal,

compare-less-than ::= [argument-1 "<" argvment-2]
builds compare-less-than,

compare-not-equal ::= [argument-1 "/=" argument-2]
builds compare-not-equal,

compare-in ::= [argument-1 "in" argument-2] %% arg-2 must be a set,
builds compare-in, %% seq or variable

compare-for-all ::= ["forall" "(" name-uses + "," ")"
"(" [set-arg + "&"] "=>" argument-1 ")"]
builds compare-for-all,

compare-exists ::= ["exists" "(" name-u es + "," ")"
n(u [set-a:r:g + ntu] n)n J
builds compare-exists,

%%% Set comprehension expressions %%4%

set-union ::= [argument-1 "union" argument-2]
builds set-union,

set-diff ::= [argument-1 "set-diff" setbuilder-map]
builds set-diff,

getitem ::= ["getitem" "(" setbuilder-map ")"]
builds getitenm,

getset ::= ["getset" setbuilder-map]

191

builds getset,

setbuilder ::= ["{" defined-name "|" set-diff-condition + "&" "}"]
builds setbuilder,

%%% Predicate Range Expressions %%%

r-equal ::= ["=" argument]
builds r-equal,

r-greater-or-equal ::= [">=" argument]
builds r-greater-or-equal,

r-greater-than ::= [">" argument]
builds r-greater-than,

r-less-or-equal ::= ["<=" argument]
builds r-less-or-equal,

r-less-than ::= ["<" argument]
builds r-less-than,

r-not-equal ::= ["/=" argument]
builds r-not-equal,

AAULAAAAAAARAAAAAAAXLAA A LAY STATEMENT PRODUCTIORS %AAAARANAAAAANANALRANRAANKY

assignment-statement ::= [LHS ":=" RHS]
builds assignment-stateament,

create ::= ["create" "(" defined-name ":" name-use ")"]
builds create,

destroy ::= ["destroy" "(" name-use ")"]
builds destroy,

display ::= ["display" "(" (name-use | display-set) ")"]
builds display

WARAAAANAA LA AR AL R AR AL ARN AR LU RAARAA A AR A RR AR AAN AR AR AL AR R AR AR AR A LA AN LAR LA

no-patterns
precedence
for expression brackets "(" matching ")"

(same-level "and", "or" associativity left),

(same-level "<, "<=" "m" 3=t 3N N/=M aggociativity none),
(same-level "in", "set-diff", "union" associativity left),

(same-level "+", "-" associativity left),

(same-level "s", "/", "mod" associativity left),

(same-level "#¢", "abs",'"not" associativity none)

symbol-start-chars
"abcdefghijklsnopqrstuvexyzABCDEFGHI JKLMNOPQRSTUVWXYZ"

192

symbol-continue-chars
"abcdefghijklmnopqrstuvexyzABCDEFGHI JXLMNOPQRSTUVWXYZ0123456789-."

comments
"%4" matching "

’
“#{1" matching "||#" nested
g

end

193

B.2.2 Ada PDL Grammar
! in-package(''ru")
't in-grammar(’syntax)
%%% -*- Mode: RE; Package: ADA; Base: 10; Syntax: Refine -#-
%11
This file defines the grammar for parsing a subset of Ada called AdaCs.

grammar AdaCs

start-classes procedure-declaration

file-classes procedure-declaration

productions
arithmetic-add ::= [argument-1 "+" argument-2] builds arithmetic-add,
unary-plus ::= ["+" argument-1] builds unary-plus,
unary~minus ::= ["-" argument-1] builds unary-minus,

arithmetic-divide ::= [argument-1 "/" argument-2]
builds arithmetic~divide,

arithmetic-modulo ::= [argument-1 "mod" argument-2]
builds arithmetic-mecdulo,

arithmetic-multiply ::= [argument-1 "s*" argument-2]
builds arithmetic-multiply,

arithmetic-subtract ::= [argument-1 "-" argument-2]
builds arithmetic-subtract,

arithmetic-abs ::= ["abs" argument-1]
builds arithmetic-abs,

arithmetic-exponent ::= [argument-1 "#+" argument-2]
builds arithmetic-exponent,

aassignment-statement ::= [ALHS '":=" expression-value ";"]
builds aassignment-statement,

boolean-and ::= [argument-1 "and" argument-2]
builds boolean~and,

boolean-not ::= ["not" argument-1]

194

builds boolean-not,

boolean-or ::= [argument-1 "or" argument-2]
builds boolean-or,

compare-equal ::= [argument-1 "=" argument-2]
builds compare-equal,

compare-greater-or-equal ::= [argument-1i '">=" argument-2]
builds compare-greater-or-equal,

compare-greater-than ::= [argument-i ">" argument-2]
builds compare-greater-than,

compare-less-or-equal ::= [argument-1 "<=" argument-2]
builds compare-less-or-equal,

compare-less-than ::= [argument-1 "<" argument-2]
builds compare-less-than,

compare-not-equal ::= [argument-i "/=" argument-2]
builds compare-not-equal,

afunction-call ::= [aname-use "()"]
builds afunction-call,

procedure-call ::= [aname-use "()" ";"]
builds procedure-call,

identifier-definition ::= [name]
builds identifier-definition,

identifier-use ::= [name]
builds identifier-use,

integer-literal ::= [integer-value-of]
builds integer-literal,

real-literal ::= [real-value-of]
builds real-literal,

true-literal ::= ["true"]
builds true-literal,

false-literal ::= ["false"]
builds false-literal,

an-if-astatement ::= ["if" test-condition "then" then-part + ""
{([elsif-part + "" "else" else-part + ""]
I ["elaell else_put + l!ll])}llendll l!if!l PI;II]
builds an-if-statement,

elsif-statement

::= ["elsif" elsif-test-condition "then" elsif-statements + ""]
builds elsif-statement,

195

basic-loop
::= [{[loop-id ":"]} "loop" loop-statement-sequence + ""
"end" "loop" n;n]
builds basic-loop,

for-loop
::= [{[loop-id ":"]} "for" aname-use "in" start-range "." "."
end-range "loop" loop-statement-sequence + "" "end" "loop" ";"]
builds for-loop,

while-loop
::= [{[loop-id ":"]} "while" loop-boolean-exp "loop"
loop-statement-sequence + "" "end" "loop" ";"]
builds while-loop,

return-statement ::= ["return" expression-value ";"]
builds return-statement,

exit-statement ::= ["exit" {exit-id} {["when" expression-value]} ";"]
builds exit-statement,

procedure-declaration ::= ["procedure" adefined-name "is" block-map]
builds procedure-declaration,

function-declaration
::= ["function" adefined-name "return" avariable-type "is"
block-map]
builds function-declaration,

block-structure
::= [{[adefined-name ":"]} {["declare" declaration-part = ""]}
"begin" statement-sequence + "" "end" {adefined-name} ";"]
builds Block-structure,

ablock
::= [declaration-part * "" "begin" statement-sequence + "' "end"
{bdefined-name} ";"]
builds ablock,

variable~declaration
::= [adefined-names +"," ":" {constant-option} avariable-type
{[":=" expression-valuel} ";"]
builds variable-declaration,

enumerated-declaration
::» ["type" adefined-name "is" "(" adefined-names +"," ")" ";"]

builds enumerated-declaration,

succ-expression ::= [enumtype-name "’succ" "(" aname-use")"]
builds succ-expression,

pred-expression ::= [enumtype-name "’pred" "(' aname-use")"]
builds pred-expression,

val-expression ::= [enumtype-name "’val" "(" expression-value ")"]
builds val-expression,

196

char-expression ::= [aname-use "’char")
buildes char-expression,

float-to-int ::= ["integer" "(" expression-value ")"]
builds float-to-int,

int-to-float ::= ["float" "(" expression-value ")"]
builds int-to-float,

subprogram-declaration ::= [(subprog2proc-decl | subprog2func-decl)}
builds subprogram-declarationm,

type-enumerated ::= [enumerated-symbol-map]
builds type-enumerated,

type-boolean ::= ["boolean"]
builds type-boolean,

type-string ::= ["string"]
builds type-string,

type-integer ::= ["integer"]
builds type-integer,

type-float ::= ["float"]
builds type-float,

Constant-flag ::= ["constant"]
builds Constant-flag,

Read-statement ::= ["read" "(" read-value ")" ";"]
builds Read-statement,

Write-statement

::= ["write" "(" write-expression ")" ";"]
builds Write-statement

no-patterns

precedence

for expression brackets "(" matching ")"

(same-level "and", "or'" associativity left),
(same-level "<", "<a" 6 Mam" tymn N3N 0 /ab aggociativity none),
(same-level "+", "-" associativity left),
(same-level "#", "/", "mod" associativity left),

(same-level "##", "abs", "not" associativity none)

symbol-start-chars
"abcdefghijklmnopqrstuvexyzABCDEFGHI JKLMNOPQRSTUVWXYZ"

symbol-continue-chars
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123466789_"

197

comments
"--" gatching "
" %% "--" to end-of-line

%% brackets "(" matching ")",
%z " [u matching l|] n

end

198

Appendiz C. Object Modeling Language REFINE Implementation

C.1 Translation Software
PIA AN YA AN AN A AN AN AN AN A A AN SN AN SN A AN AN A AN N AN Y AN N AN AN Y NG AR AN A AN a b b h Y b v)

A% A4%
%%% File-Name : Trans-Oml.re w4
n%% py3a
%%% Authors : Capt Mary Boom, Capt Brad Mallare %L%
w44 %A%
%%% Purpose : This program parses an OML specification into a Refine r Yy
P42 Abstract Syntax Tree (AST) and then translates the AST %%
FYA S representation into an executable Refiue source code program. %%
pA YA P11
%%%4 Dependencies : Prior to compiling this program, the following programs %%%
%%% must be compiled and loaded into the Refine database: Py 44
pa4a b1
pAAA Dialect %%
%% dm.re AA%
%L gm.re %L%
%44 r-lib.re WAL
%% lisp-utilities.lisp A%%
W% A%%
%%% Functions : %A%
%% Convert w%
%%% Trans *%
Y ¥4 Print-Class-Decl p 344
YAy Print-Instance-Decl 445
%4% Print-Attr-Value A%
%% Print-Store-Function py A
w%% Print~Flow-Function A%%
PAAA Print-Behavior-Rule X%
pa 44 Print-Decision-Table pa 44
%%% Print-Pre-Post-Condition A%
%%% Convert-Attr-Name A%
A% Find-State A%
%% Print~Action-Entry %A%
%% Print-State-Function A%
%44 Print-State-Behaviors 1%%
%%4% Print-Proc-Function %%
%h% Add-State-Sim-Function %1%%
%% Add-Proc-Sim-Function py 44
%44 Print-Predicate-Expression P34
444 Print-Statement %%
%%% Print-Expression %%
%h% Print-Delete-Dbject-Function py 34
%A% %A%
%4% Operation : After loading this program and the required programs *h%
%%% mentioned above, type the following commands at the Refine prompt: %%%
44 43
%% (convert "<your-OML-file-name>") %54
341 %%

%%% The name of the generated executable specification will be displayed %%%
%%% on the screen. Additionally, the executable specification will be %%%
%%% automatically compiled and loaded. py a4
%h% A%

199

Py 43 Once the OML specification has been converted into an executable %%
%% Refine specification, the specification can be executed by typing %%%

%%% the following command: A%%
Fy3A (sim) %%%
A% %%
%%% If a control structure was not provided in the OML spec, then the %%

%%% user will be prompted to make control decisions during the simulation %%X
PYAAA NN A NNy NS A AN Y NN A NSNS A AN NN A AN A NS AN A A NS AN A S NN NN NN AN YA VA NI I YA NS AN TN YY)

t! in-package (’RU)
!1 in-grammar (’user)

AAARAAAAALLARAXAAAARARAANAUAALLL GLOBAL VARIABLES RAAUANNAAAANNALARNALARAAALR AN,
%% Global variables are in all CAPS throughout this file
type ATTR-REF = tuple(old-name : string, unig-name : string)

var OML-0BJ : object-class subtype-of user-object
var ATTR-NAME-TABLE : set(ATTR-REF) = {} %% attribute name table

var ROOT : object = undefined %% root of the AST

var EXT-EV-SET : set(symbol) = {} %% set of all external events

var INITIAL-STATE : symbol = undefined %% start state=1st state in OML file
var TILDE : string = "~"

var OBJ-NAMES : set(symbol) = {} %% set of all object instance names
var PROC-NAMES : set(aymbol) = {} %% set of all process object names

var FLOW-NAMES : set(tuple(name : symbol, flow-type : symbol)) = {}

%% set of all flow names and types
var STORE-NAMES: set(symbol) = {}
var EXTERNALS-NAMES: set(aymbol) = {}

AAAAARAARAALRAALALLAARAAALANALLA%Y CONVERT UUURARRARAAARRAAALANARAAAARRRARARARAAL
%%4% This is the main function. It parses in the OML file and calls the

%%4% translation function (trans). The converted file is then compiled and

%%% loaded into the Refine object base.

function convert(filename : string) =

(let(source-file : string = "")

%% parses in OML spec and ensures that the top object is an informal model
if informal-model(pf(filename)) then

(ROOT <~ oml-root(); %% find the root of the AST
% (if sem(ROOT) then %% semantic checks the file
%% (it tcheck(ROOT) then %% type checks the file

source-file <~ trans(ROOT);
compile-file(source-file);
load(source-file);

format (true,"To run, keyin \"(sim)\"~%"))

%% else

% format(true,You must fix type mismatches before compilation”))
%% else

%% format (true,"You must fix semantic errors before compilation"))))
% source-file <~ trans(ROOT))

200

else format(true, "file must begin with a specification declaration")

)
RRAREAAARAAAAARLLRAAAALARAARAAALAAY TRANS RAAAALAAXUUN LA A RRAALLAAAALLLUAALALALK

%%% This function enumerates over the various objects in the AST and calls the
%%% appropriate functions which translate the AST objects into a REFINE
%%% executable.

function trans(o:object) =

let(Fname : string = "oml",
Nev-Fname : string = "oml.re")

(if informal-model(o)
then
Fname <- princ-to-string(name(defined-name(0)));
New-Fname <- concat(Fname, ".re");
format (true, "Translating to “A” %", New-Fname);

(enumerate obj over
fobj | (obj : OML-OBJ) OML-DBJ(obj)] do
erase-object (obj));
PROC-NAMES <- {};

rd-on{(New-Fname) ; %redirect standard output to file

format (true, "!! in-package (’RU)"%");
format(true, "!! in-grammar (’user)-%~%");

format (true, "var OML-Obj : object-class subtype-of user-object % %");
format (true, "var “A : object-class subtype-of OML-0bj~% %", Fname);
(if ex (x) (State-Object(xz)) then
format (true, "type return-values = tuple(validity: symbol,
events: seq(symbol),
behaviors : seq(symbol),
st-behaviors : seq(symbol))~%"%")
elseif ex (x) (Process-Object(x)) then
format (true, "type return-values = tuple(validity: symbol,
next-procs : seq(symbol))~%~%")
);

format (true, "\¥\%U\% Define object classes “%4~%");

(enumerate vars over
deacendants-of-class(o, ’Entity-Class) do
print-class-decl(vars, Fname);
if defined?(external-entity(vars)) then
EXTERNALS-NAMES <-
EXTERNALS-NAMES vith name(defined-name(vars)));

format (true, "\%\%\% Define instances of object classes ~%~%");
(enumerate instance over

descendants-of-class(o, ’Entity-Instance) do
print-instance-decl{instance, Fname);

201

OBJ-NAMES <- DBJ-NAMES with name(defined-name(instance));
if defined?(external-entity(instance)) then
EXTERNALS-NAMES <-
EXTERNALS-NAMES with name(defined-name(instance)));

format (true, "\%\%\% Define Store Objects “%{"%4");

(enumerate sto over
descendants-of-class(o, 'Store-Object) do
print-store-function(sto);
STORE-NAMES <- STORE-NAMES with name(defined-name(ato)));

format (true, "\%\%\% Define objects for each flow object “%~%");

(enumerate flow over
descendants-of-class(o, 'Flow-Object) do
print-flow-function(flow);
OBJ-NAMES <- OBJ-NAMES with name(defined-name(flow));
FLOW-NAMES <- FLOW-NAMES
vith (<name(defined-name(flow)),name(flov-data-map(flow))>));

format (true, "\%\%\% Define functions for behavior objects ~%4~%");

(enumerate beh over
descendants~-of-claes(o, ’Behavior-Object) do
print-behavior-rule(beh));

%% create a set of all external events
(enumerate ev over
descendants-of-class(o, ’Event-Object) do
if undefined?(event-type(ev)) then %% checks if external event
EXT~EV-SET <- EXT-EV-SET with name(defined-name(ev)));

format (true, "\%\%\% Define function for each state object ~%~%");

(enumerate state over
descendants-of-class(o, ’State-Object) do
print-state-function(state);
if state = last(set-to-seq(descendants-of-class(o, ’State-Object)))
then INITIAL-STATE <- name(defined-name(state)));

(if “empty(descendants-of-class(o,’State-Object)) then
Add-State-Sim-Function(Fname));

format (true, "\%\%\% Define function for each process object ~“%4~%");
(enumerate proc over
descendants-of-class(o, ’Process-Object) do
PROC-NAMES <- PROC-NAMES vith name(defined-name(proc));

print-proc-function(proc));

(it “empty(descendants-of~class(o, ’Process-Object)) then
Add-Proc-Sim-Func());

format (true, "

202

\%\%\% Defines function for erasing all objects in Refine’s database.
\%\%\% Execute this function before you reload this file if you do not use
\%\%\% the convert process. ~%~%");

Print-Delete-Object-Function(Fname) ;
rd-off(); %% return to writing standard output
values() %%prevents "nil" from being returned at end of program
else format(true, "file must begin with a specification declaration"));
princ-to-string(name(defined-name(o))) % return file name gans ".re"
AAAAAAAANRARAUALAAAAAAUNALALL PRINT-CLASS-DECL RAXRAXRARNARAANRARANARRARALAL
%% Top-obj is the top level object name in the specification
%% Class-name is the current object-class name. If the object class is a
%% class-of an entity object, then the object class name will be used to
%% identify it. If the object class is an instance-of an entity object then
%% the class name concatenated with "-ENTITY" will be used to identify that
%% object class.
function print-class-decl {(vd : object, top-obj : string) =
%%% This section prints out the object class definitions
let(class-name : string = undefined,
attr-name : string = undefined,
u-attr-name : string = undefined,
x-ref : ATTR-REF = <undefined, undefined>)
class-name <- princ-to-string(name(defined-name(vd)));
(if entity-class(vd) then %% it is a class of an entity object

format (true, "var “A : ", class-name);
format (true, "object-class subtype-of “A “%", top-obj)

else %% it is an instance of an entity object
class-name <- concat(princ-to-string(name(defined-name(vd))), "-ENTITY");
format (true, "var “A : ", class-name);

format (true, "object-class subtype-of “A “%", top-obj)
);

% This section declares the attributes of each object class. Each attribute
% is declared as a variable which maps the object class to the attribute type.
% The attribute names are translated into the class-name concatenated with the
% attribute name to ensure that all variable names are unique.

(it defined?(entity-user-decl-map(vd)) then
(enumerate id over entity-user-decl-map(vd) do
attr-name <- princ-to-string(name(defined-name(id)));
u-attr-name <- concat(class-name, "-", attr-name);
format (true, "var “A: ",u-attr-name);
format (true, " map(~A, ", class-name);
(if type-integer(variable-type(id)) then

203

format(true, "integer")
elseif type-boolean(variable-type(id)) then
format (true, "boolean')
elseif type-real(variable-type(id)) then
format (true, "real")
elseif type-string(variable-type(id)) then
format(true, "string")
elseif type-symbol(variable-type(id)) then
format (true, "symbol")
else format(true, "type declaration error")
);
format(true, ") = {}1}°%");

x-ref.old-name <- concat(class-name, ".'", attr-name);
x-ref.uniq-name <- concat(u-attr-name, "(", class-name, ")");
ATTR-NAME-TABLE <- union(ATTR-NAME-TABLE, {x-ref})

)H

format (true, "~%")

)
KARAARLAAEXANRAR RN KAAAXLL NN PRINT-INSTANCE-DECL XRXARKAAAAXANRNARNRNAANAALNLL

%4 This function creates instances of class objects. Instances are made by
%% creating a FORM statement which defines the instance object and sets the
%% attributes for that object.

functi-n print-instance-decl (inst : object, file-name : string) =

let(class-name : string = undefined,
object-name : string = undefined,
attr-name : string = undefined,
u-attr-name : string = undefined,
x-ref : ATTR-REF = <undefined, undefined>)

%%% If an object is an instance (as opposed to a class) of Entity, then we must
%%% declare an object class as well as instantiate that class. This section
%%% declares object classes for instances of entity objects

(if undefined? (name-use(inst)) then
print-class-decl(inst, file-name)
);

%%% This section creates an instance of the object class
object-name <- princ-to-string(name(detined-name(inst)));

(if defined?(name(name-use(inst))) then %% it is an instance of a class
class-name <- princ-to-string(name(name-use(inst)));
format (true, "var "A : “A = %",
name(defined-name(inst)), name(name-use(inst)));

format (true, " set-attrs(make-object(’“A),”%", name(name-use(inst)));
(if defined?(entity-user-def-map(inst)) then

format (true, " ’name, ’s#"3,"%", name(defined-name(inst)))
else

format (true, " 'name, ’+~A)"%", name(defined-name(inst)))

)

204

else %% it is an instance of an entity
class-name <- princ-to-string(name(defined-name(inst)));
format (true, "var "A : A = ~Y",
name{defined-name(inst)), concat(class-name, "-ENTITY"));
format (true, " set-attis(make-object(’~A),”%"
,concat (class-name, "-ENTITY"));
(if defined?(entity-user-decl-map(inst)) then

format (true, " ‘name, ’#74," %", name{(defined-name(inst)))
else
format (true, " ‘name, ’*~A)~%", name(defined-name(inst)))

)
)
(if defined?(entity-user-def-map(insat)) then
enumerate attr over entity-user-def-map(inst) do
attr-name <- princ-to-string(name(name-use(attr)));
u-attr-name <- concat(class-name, "-'", attr-name);
format (true, " ’"A, ", u-attr-name);
print-attr-value(attr);

%% this creates a table that cross-references attribue names used in behaviors
%% with the names as they are actually stored in the system

x-ref.old-name <- concat(object-name, ".", attr-name);
x-ref .uniq-name <- concat(u-attr-name, "(", object-name, ")");
ATTR-NAME-TABLE <~ union(ATTR-NAME-TABLE, {x-ref});

(if attr neq last(entity-user-def-map(inst)) then
format (true, ","%")
else
format (true, ")~%")

)

elseif defined?(entity-user-decl-map(inst)) then
enumerate attr over entity-user-decl-map(inst) do
attr-name <- princ-to-string(name(defined-name(attr)));
u-attr-name <- concat(class-name, "-ENTITY-", attr-name);
format (true, " ’~A, ", u-attr-name);
print-attr-value(attr);

%% this creates a table that cross-references attribue names used in behaviors
%% with the names as they are actually stored in the system

x-ref.old-name <- concat(class-name, ".', attr-name);
x-ref.uniq-name <- concat(u-attr-name, "(", class-name, ")");
ATTR-NAME-TABLE <- union(ATTR-NAME-TABLE, {x-ref});

(if attr neq last(entity-user-decl-map{(inst)) then
format (true, ", %")
else
format (true, ")~%4")
)
);
format (true, " ~%")

RARARRARRAARAKARAARNARANAAAAL PRINT-ATTR-VALUE ANXAXAARANARAAANAANALRAALALAN K

205

%% determines attribute type and prints out the actual value of the attribute

function print-attr-value (attr : object) =
(if defined?(value-map(attr)) then
(if integer-literal(value-map(attr)) then
format (true, "~“A", integer-value-of(value-map(attr)))
elseif real-literal(value-map(attr)) then
format (true, ""A", real-value-of(value-map(attr)))
elseif string-literal(value-map(attr)) then
format (true, "~S", string-value-of (value-map(attr)))
elseif true-literal(value-map(attr)) then
format (true, "true")
elseif false-literal(value-map(attr)) then
format (true, "false")
else format(true, "bad value")
)
else
format (true, "’“A", symbol-val(attr)))

AARAARRARARAAULAARAAAXAAAA LA, PRINT-STORE-FUNCTION %XAXAAAANAULLLAALALAAANALALY
%% This function transtates each store object into a variable which contains
%% a SET of objects. The type of the objects in the set is determined by the
%% content name attribute of the store. Further consideration must be given
%% to modeling stores as SEQUENCES of information. Currently, the rest of the
%% translation software assumes these store objects are modeled as sets.

function print-store-function(obj : object) =

% if nature-set-map(obj) then
format (true, "var “A : set(TA) = ",
name (defined-name(obj)), name(content-name(obj)));
format(true, "{x | (x : “A) "A(X)}"%"%",
name(content-name{obj)), name(content-name(obj)))

% else

% format(true, "var “A : seq("A) = ",

% name (defined-name(obj)), name(content-name(obj)));
% format(true, "{x | (x : ~A) "A(X)}"%°%",

% name(content-name(obj)), name(content-name(obj)))

UAALAAARLAALAAAANAAA AL AU UAL AL, PRINT-FLOW-FUNCTION %%%%EAAAARLAALAARAUAAALLAL %A%
%% Flow objects are translated into unique objects. The object type is

%% determined by the flow object’s flow-data attribute. Once the object is

%% created, its attributes (as they appear in behavior objects) must be given
%% unique attr names and added into the ATTR-NAME-TABLE. Flows are translated
%% before behavior objects.

function print-flow-function(flow-obj : object) =
let(obj-name : string = undefined,
class-obj : object = undefined,
class-name : string = undefined,
attr-name : string = undefined,
u~-attr-name : string = undefined,
x-ret : ATTR-REF = <undefined, undefined>)

obj-name <- princ-to-string(name(defined-name(flow-obj)));
format (true, "var "A : "A = %",

206

name (defined-name(flow-obj)), name(flov-data-map(flow-obj)));
format (true, " set-attrs(make-object(’~A),~¥"
,name (flow-data-map(flow-obj)));
format (true, " ’name, ’+*"A)"%"%", name(defined-name(flow-obj)));

class-obj <- arb({ x | (x) x in analysis-obj-map(root) & entity-class(x) &
name (defined-name(x)) = name(flow-data-map(flow-obj))});

(if defined?(entity-user-decl-map(class-obj)) then
enumerate attr over entity-user-decl-map(class-obj) do
attr-name <- princ-to-string(name(defined-name(attr)));
class-name <- princ-to-string(name(flow-data-map(flow-obj)));
u-attr-name <- concat(class-name, "~'", attr-name);
x-ref.old-name <- concat{(obj-name, ".", attr-name);
x-ref .uniq-name <- concat(u-attr-name, "(", obj-name, ")");
ATTR-NAME-TABLE <- union(ATTR-NAME-TABLE, {x-ref}))
FAUARAAARAAAARARRAAA AL ALK %%%A %% PRINT-BEHAVIOR-RULE %A%A%NAAANANAALAALAAAL AR A%
%% Determines the type of behavior object (i.e. PDL, DT, or PPC) and
%% translates the behavior into a Refine function with transform rules
%% Print flag denotes whether a NON dont-care value has been found and printed
function print-behavior-rule (o : object) =
%%% Converts a DT into a Refine function %%%
if decision-table(o) then
print-decision-table(o);
format (true, "\A\UNANENUNUNZNININANANL “4~%™)

%% Converts a PPC into a Refine function

elseif pre-post-cond(o) then
print-pre-post-condition(o)

%% Converts a PDL into a Refine function

% elseif process-desc-lang(o) then

% trans-ada(o) %% calls PDL translation function in trans-ada.re
AARARAAUAARALURAAAAUARARAA AL, A%% PRINT-DECISION-TABLE %U%%AAUNAANAAAXUNXLLANALALY
%%% Translates DT objects into Refine

function print-decision-table(o : object) =

let(num-rules : integer = undefined,
print-flag : boolean = false)

num-rules <- size(condition-entry-map(dt-cond-row-map(o) (1)));
%% prints out the function name and declares a local variable

format (true, '"function "A() : symbol ="%", name(defined-name(o)));
format(true, " let(return-symbol : symbol = undefined)~%~%");

207

format (true, "("%4");

(enumerate i from 1 to num-rules do
print-flag <- false; %% reset print-flag

%% prints out preconditions for each rule
(enumerate row over dt-cond-row-map(o) do
%% if entry is not dont-care
if undefined?(dont-care-value(condition-entry-map(row)(i))) then
(if print-flag then
format (true, " & ");
format (true, "("A ", convert-attr-name(name(name-use(row))));
print-predicate-expression(condition-range(
condition-entry-map(row) (i)));
format (true, ")~%")
else
format (true, " ("A ", convert-attr-name(name(name-use(row))));
print-predicate-expression(condition-range(
condition-entry-map(row)(i)));
format (true, ")~%");
print-flag <~ true
)
);
format (true, " -->"%4"); %% print out the transform symbol

%% print out the postcondtions for each rule
print-flag <- false; %% reset print-flag
(if defined?(dt-action-rovw-map(o)) then
(enumerate row over dt-action-row-map(o) do
if print-flag then

format (true, " & ");
format (true, "("A ", convert-attr-name(name(name-use(row))));
format (true, "<- ");
print-action-entry(action-entry-map(row) (i));
format (true, ")~%")

else

format (true, " ("A ", convert-attr-name(name(name-use(row))));
format (true, "<~ ");
print-action-entry(action-entry-map(row)(i));
format (true, ")"%");
print-flag <- true

)

) H

%% returns the name of the next state if a next event is specified

(if name(dt-event-map(o)(i)) “= ’none then
let (next-state : symbol = undefined)
next-state <-
find-state(name(defined-name(o)), name(dt-event-map(o)(i)));
(if print-flag then
format (true, " & ");
format (true, "(return-symbol <- ’~A", next-state)
else

208

format (true, " (return-symbol <- ’~A", next-state)

)N

%% add semicolon between transforms (rules) and line feeds
(if i "= num-rules then
format (true, ");~%"%")
else
format (true, ")~%"%"))
)H
format (true, "); %return-symbol~%")

RRRRRRARARAALALAARAAAALALAAN PRINT-PRE-POST-CONDITION %X%AXAAUAXLANRALANRALALANLY

%%% Translates PPC objects into Refine. Currently converted into If-Then
%4% structure. Once PDL is fully integrated, recommend PPCs be converted into
%4% transform construct which is a better description of "what" must be done.

function print-pre-post-condition(o : object) =

format (true, "function “A() ="%", name(defined-name(o)));
format(true, " let(return-symbol : symbol = undefined)~%~%");
format (true, " (");

(enumerate ppc over behavior-ppc-map(o) do

%% prints out preconditions for each rule
(enumerate precond over ppc-pre-map(ppc) do

(if precond = first(ppc-pre-map(ppc)) then
format (true, "(if ");
print-expression(precond) ;
format (true, "~%")

else
format (true, " and ");
print-expression(precond) ;
format (true, "~%")

)

); %% ends enum precond

format (true, " then™%"); A% print out the transform symbol

%% prints out postconditions for each rule
(if defined?(ppc-post~map(ppc)) then
(enumerate postcond over ppc-post-map(ppc) do
(if postcond ~= last(ppc-post-map(ppc)) then
format (true, " (");
print-statement(postcond);
format (true, ");"%")
else
format (true, "(");
print-statement (postcond);
format (true, ")"%")
)
) %% ends enum postcond
);

%% if a next event is specified, find the name of the next state associated
%% with that event and assign the name to return-symbol

209

(if name(ppc-event-map(ppc)) “= ’none then
let (next-state : symbol = undefined)
next-state <-
find-state(name(defined-name(o)), name(ppc-event-map(ppc)));
(if defined?(ppc-post-map(ppc)) then

format (true, " HOH

format (true, "(return-symbol <- ’~A", next-state)
else

format (true, " (return-symbol <~ ’"A", next-state)

)
);

%% add semicolon between transforms (rules) and line feeds
(if ppc “= last(behavior-ppc-map(o)) then
format (true, "); %"%")
else
format (true, ")")

)

); %% ends enum ppc
format (true, ");"¥% return-symbol % %") %% returns name of next state

TULRAARAAAALLAANALRAAARAARALALY CONVERT-ATTR-NAME XUNAAAUALAAULAAANLLAN A XAAAAAY

%%% Searches for the original name in the OML table and returns the unique
%%% attribute name

function convert-attr-name(o : symbol) =

let (nev-name : string = undefined)
nev-name <- princ-to-string(o);
(enumerate s over ATTR-NAME-TABLE do
if s.old-name = nev-name then
new-name <- s.uniq-name);
nev-name %% return the unique name

ARARAARRARARAARRRARARAARARALANAANANA FIND-STATE AARUARRARRUARANAAARRLARLARLL NN LY

%%% Given the event name declared in a behavior rule, this finds the next state
%%% to tramsition to.

function find-state(behavior-name: symbol,
event-name : symbol) =

let (current-state : symbol = undefined,
next-state : symbol = undefined)

(enumerate entry over descendants-of-class(ROOT,’Relation-Table) do
if behavior-name = name(to-obj-map(entry)) then
current-state <- name(from-obj-map(entry))
);
(enumerate entry over descendants-of-class(ROOT, ’Relation-Table) do
if current-state = name(from-obj-map(entry)) and
event-name = name(assoc-obj-map(entry)) then
next-state <- name(to-obj-map(entry))

210

);

next-state
LAALALULLLLAAAALAL A AL LA L A% % %% PRINT-ACTION-ENTRIES AAAARARRARRARRUANARAANAALN%

%4% Called by Print-Decision-Table, this function determines the type of the
%%% action entry element and prints out the element

function print-action-entry(o : object) =

if integer-literal(action-value(o)) then
format (true, " “D", integer-value-of(action-value(o)))

elseif real-literal(action-value(o)) then
format (true, " ~D", real-value-of (action-value(o)))

elseif false-literal(action-value(o)) then
format (true, " false")

elseif true-literal(action-value(o)) then
format (true, " true")

elseif string-literal(action-value(o)) then
format (true, " ~S", string-value-of (action-value(o)))

elseif identifier-use(name-use(o)) then
let (temp : string = undefined,
dot : char = #\.)
temp <- princ-to-string(name-use(o));
(if dot in temp then
format (true, " “A", convert-attr-name(name(name-use(o))))
else
format (true, " ’~A", name(name-use(o)))

)

elseif arithmetic-expression(action-expr(o)) then
print-expression(action-expr(o))

else format (true, " Oh Oh, value type is not defined.")

AURARRRAANAUARAAARARARASLAALY PRINT-STATE-FUNCTION AUXAARAAAAKANARALARAANAARLN LA

%%% This function translates each state object into a function.

%%4% The state space attribute is used to test vhether the system’s current state
4%% satisfies the state space values. If the state space is valid, then a

%%% list of valid events, event-behaviors, and state behaviors will be created.

function print-state-function (o : object) =

let (valid-str : string = ""% VALID STATE SPACE™%",
invalid-str : string = "~% INVALID STATE SPACE~%¥",
valid-ext-ev : seq(symbol) = [],
valid-ev-beh : seq(symbol) = [],
state-beh : seq(symbol) = [1)

%% creates a seq of valid external events for the state and a seq of valid
%% behaviors associated with each external event. The ith element in each set

211

%% are associated with each other.

(enumerate entry over descendants-of-class(ROOT, ’Relation-Table) do
if name(to-obj-map(entry)) = name(defined-name(o)) and
name(assoc-obj-map(entry)) in EXT-EV-SET then
valid-ext-ev <- concat(valid-ext-ev, [name(assoc-obj-map(entry))]);
(enumerate temp over descendants-of-class(ROOT, ’Relation-Table) do
if name(from-obj-map(temp)) = name(assoc-obj-map(entry)) and
name (assoc-obj-map(temp)) = >ICO then
valid-ev-beh <- concat(valid-ev-beh, [name(to-obj-map(temp))])

);

%% print function name and writes the two sequences above into the translated
%% file

format (true, "function “A() : return-values ="%", name(defined-name(o)));
format (true, "let (valid-ext-event : seq(symbol) = ~% [);
(enumerate ext-ev over valid-ext-ev do

if ext-ev "= last(valid-ext-ev) then

format (true, "’~A, ", ext-ev) %%separate elements with commas
else
format (true, "’"A", ext-ev)
);
format (true, "],7%"); %¥%close the sequence
format (true, " valid-event-beh : seq(symbol) = ~Y [

(enumerate ev-beh over valid-ev-beh do
if ev-beh "= last(valid-ev-beh) then

format (true, "’"A, ", ev-beh) %%separate elements with commas
else
format (true, "’~A", ev-beh)
);
format (true, "],7%"); %%close the sequence

state-beh <- print-state-behaviore(name(defined-name(o)));
format (true, " state-beh : seq(symbol) = [");
(enumerate st-beh over state-beh do

if at-beh "= last(state-beh) then

format (true, "’~A, ", st-~beh) %¥%separate elements with commas
else
format (true, "’~A", st-beh)
);
format (true, "],”%"); %%close the sequence
format (true, " return-tuple : return-values = undefined)~%"%");
format (true, " format(true, \"The current atate of the system is ~S\"); %",

name(defined-name(o)));

%% print if statement to check if the state-space is correct

format (true, " (if ~Y% ")
(enumerate expr over set-to-seq(state-space-map(o)) do
print~expression(expr);

if expr "= last(set-to-seq(state-space-map(o))) then

212

format (true, " and™% ")
else
format (true, "% then%")
)H

%% if state-space is correct

format (true, " format (true, ~S);~%", valid-str);

format (true, " return-tuple <- <’valid, valid-ext-event,
valid-event-beh, state-beh>~%");

format(true, " else™%");

%% if state-space is incorrect

format (true, " format (true, ~S);~%", invalid-str);
format (true, " return-tuple <- <’invalid, [], [’>~A], state-beh>);"%",
name (defined-name(o0)));
%% send return-tuple back to calling function

format (true, " return-tuple “%");
format (true, "~%")

AARRALLAARARLAALUAAAARAULUAL% LY, PRINT-STATE-BEHAVIORS %AUNAAAAUNUALAUAAAAAAALLLALL
function print-state-behaviors(state-name: symbol) =
let (behavior : seq(symbol) = [])

(enumerate entry over descendants-of-class(ROOT, ’Relation-Table) do
if state-name = name(from-obj-map(entry))
and name(assoc-obj-map(entry)) = *ICO then
behavior <- prepend(behavior, name(to-obj-map(entry)))
);

behavioxr %% return the seq of behaviors associated with the state-name
RRRARRARAAALAAARAARAAAURNALLAY PRINT-PROC-FUNCTION %XA%ANAAALUAXNUALLAXAAANAALAL %Y

%%% This function translates OML process objects into Refine functions. Each
%%% time the Refine function is called, it will perform one of two major tasks:
%%% 1~ check if all inflows are satisfied.

%%% 2- execute process behavior and return info to calling function

function print-proc-function(proc : object) =
let(proc-name : symbol = name(defined-name(proc)),
all-inflows : seq(symbol) = [J,
inflov-objs : set(object) = {},
int-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) = [],
ext-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) = [],
next-procs : seq(symbol) = [])

%% creates a seq of in~flows for the process .
(enumerate entry over descendants-of-class(ROOT, ’Relation-Table) do

if name(to-obj-map(entry)) = name(defined-name(proc)) and
name (assoc-obj-map(entry)) “= ’ICO then

213

all-inflows <- concat(all-inflows, [(name(assoc-obj-map(entry)))])
);
%% get flow objects k make a set of their names and types

inflow-objs <- {x | (x:object) flow-object(x) &
name (defined-name(x)) in all-inflows};
(enumerate flow over inflow-objs do
if flow-pp(flow-link-map(flow)) then
int-flow-set <- append(int-flow-set,
(<name(flow-data-map(flow)), name(defined-name(flow))>))
elseif flow-ep(flow-link-map(flow)) then
ext-flow-set <- append(ext-flow-set,
(<name (flow-data-map(flow)), name(defined-name(flow))>))
);

%4 writes the flow-set sequences above into the translated file
format (true, "function “A(dowhat : symbol) : return-values ="%",proc-name);

format (true, "let (int-flow-set : seq(tuple(flow-type : symbol,
flow-name : symbol)) = ~% 0
(enumerate flow over int-flow-set do
if flow "= last(int-flow-set) then
format (true, "<’>7A, ’#7A>,", flow.flow-type, flov.flow-name)
else
format (true, "<’~A,’s"A>", flow.flow-type, flow.flow-name)

);
format (true, "],”%"); %%close the sequence
format (true, " ext-flovw-set : seq(tuple(flow-type : symbol,

flow-name : symbol)) = ~% m;
(enumerate flow over ext-flow-set do
if flow "= last(ext-flow-set) then
format (true, "<’~A, ’*7A>,", flov.flov-type, flow.flow-name)
else
format (true, "<’7A,’*7A>", flov.flov-type, flow.flow-name)

);
format (true, "},7%"); %%close the sequence
format (true, " intflows-valid : boolean = false,

check-flow : object = undefined,
return-tuple : return-values = <’invalid, [1>)~%"%");

%% check to see if all inflows are valid:

%% gather all the inflow objects related to the process, enumerate
%% over the attributes, checking if they are defined.

%% return-attribute-list function is defined in file obj-utilities.re
%% it expects an object as input & returns a set of refine bindings

format (true, "(if size(int-flow-set) = 0 then intflowa-valid <- true
else
(enumerate flow over int-flow-set do
check-flow <- find-object(flow.flov-type, flow.flov-name);
(enumerate flow-attr over return-attribute-list{check~flow) do
if defined?(retrieve-attribute(check-flow, flow-attr)) then
intflows-valid <- true)));

214

(if dovhat = ’execute then
(it intflows-valid then %% it valid, check ext inflows
(enumerate flow over ext-flow-set do
check-flow <- find-object(flow.flov-type, flow.flow-name);
(if (ex (x) (x in return-attribute-list(check-flow) &
undefined? (retrieve-attribute(check-flow, x)))) then~% ");

format (true, " format (true, \"Enter data for ~AA"A\¥\",
name (check-flow)); %", tilde, tilde);
format (true, " check-flow <- modify-object(check-flow))); % ");

(enumerate entry over descendants-of-class(ROOT, ’Relation-Table) do
if proc-name = name(from-obj-map(entry))
and name(assoc-obj-map(entry)) = ICO then
format (true, " “AQ);"%"%", name(to-obj-map(entry)))
);

%% set inflows to invalid data

format (true, " (enumerate flow over concat(int-flow-set, ext-flow-set) do
check-flow <~ find-object(flow.flow-type, flov.flov-name);
(enumerate flow-attr over return-attribute-list(check-flow) do
store-attribute(check-flow, flow-attr, undefined)));"%");

4% find next-processes that can be executed & add them to the file.

(enumerate entry over descendants-of-class(ROOT, ’Relation-Table) do
if proc-name = name(from-obj-map(entry))
and name(assoc-obj-map(entry)) ~= ’ICO
and name(to-obj-map(entry)) ~in STORE-NAMES
and name(to-obj-map(entry)) ~in EXTERNALS-NAMES
then
next-procs <- append(next-procs, name(to-obj-map(entry)))
);

format (true, " return-tuple <- <’valid, [");
(enumerate proc over next-procs do
if proc “= last(next-procs) then

format (true, " ’~A,", proc)
else

format (true, " ’~A", proc)
);
format (true, *1>~%"); %%close the sequence
format (true, " else %"); %% if int-flows are not valid, notify user
format(true, " format(true, \"Process cannot be executed.

All in-flows are not defined. A\Y¥\'");~%", tilde);
format (true, " return-tuple <- <’invalid, [1>)~%");
%%

format (true, " else
if intflows-valid then return-tuple <- <’valid, (1>
else return-tuple <- <’invalid, [1>);~%");

%A%
format (true, "return-tuple~%-%");
format (true, " AVAVAVAY A)

ARARRAANAAAREARAARAAAAARL ADD-STATE-SIMULATION-FUNCTION %XAXAAANAXAXNLAANXANLLAY

215

%%% This function adds a state simulation function to the translated file.
%%% It is only added when the OML spec has state based information in it.

function add-state-sim-function(Name : string) =
format (true, “function sim() ="%");

format (true, "let (sfunction : return-values = undefined,
st-name : symbol = ’~A, %% assume first state in OML file is initial
done : boolean = false,
reply : integer = undefined)~%~%", INITIAL-STATE);

format (true, " while “Adone do~%", tilde);
format (true, " sfunction <- funcall(st-name);
(if sfunction.validity = ’valid then
reply <- Make-Menu(sfunction.events, \"Events that can occur:\");
(if Reply <= size(afunction.events) then
funcall(sfunction.behaviors(reply));

enumerate st-beh over sfunction.st-behaviors do
st-name <- funcall(st-beh)
elseif Reply = size(sfunction.events)+2 then
done <- true %% selects quit
)
else %% not valid state
done <- true;~%");
format (true, "format (true, \"The system’s current state space conflicts with
the state space required to be in the above mentioned state. Here are the
current attribute values in the system. Cowpare them with the required values
specified in your specification to find the inconsistencies. A\¥\"); %~%", tilde);

format (true, " (enumerate obj over [obj | (obj : ~A) “A(obj)] do~%",
Name, Name);
format (true, " (enumerate attr over Return-Attribute-List(obj) do™%");

format (true, " format(true, \" ~AA."AA : “AATA\%\",name(obj), name(attr),
retrieve-attribute(obj, attr))~%", tilde,tilde,tilde,tilde);
format (true, ")DD It 3 D)

AARAAAALAAAAUAAAULLLAA%%% ADD-PROC-SIMULATION-FUNCTION %%A%ANAAAAAAUUAAAAAUAUALL LY,
%%% This function adds a process simulation function to the translated file.
%4% It ies only added when the OML spec has process based information in it.

function add-proc-sim-func() =
let(initial-procs : set(symbol) = PROC-NAMES)

format (true, "function sim() ="%");

format (true, "let (pfunction : return-values = undefined,
done : boolean = false,
reply : integer = undefined,
test : return-values = undefined,
valid-proce : seq(symbol) = (],
init-procs : seq(symbol) = [");

(enumerate pname over PROC-NAMES do
(enumerate entry over descendants-of-class(ROOT, ’Relation-Table) do
if pname = name(to-obj-map(entry)) then
it ex (x) (flow-object(x) &

216

name(defined-name(x)) = name(assoc-obj-map(entry)) &
“flow-ep(flov-link-map(x))) then
initial-procs <- initial-procs less pname

»;

{enumerate pname over set-to-seq(initial-procs) do %% prints intitial procs
if pname "= last(set-to-seq(initial-procs)) then
format (true, "’~A, ",pname)
else
format (true, "’~A", pname));

format (true, "1)~%"%"); %%close the sequence

%% 1- display list of all processes and ask user to select initial process
%% 2- Execute the process. Process returns a tuple <valid, next-procs>
%% 3- If valid then display list of potential next processes to execute.

format (true, " reply <- Make-Menu(init-procs,
\"Choose one of these processes to initialize the simulation:\"); %");
format (true, " (if Reply <= size(init-procs) then
pfunction <- funcall(init-procs(reply), ’execute);
while ~“Adone do~%'", tilde);
format (true, " valid-procs <~ [];
(if pfunction.validity = ’valid then
(if size(pfunction.next-procs) > 0 then
(enumerate proc over pfunction.next-procs do
test <~ funcall(proc, ’check);
(if test.validity = ’valid then
valid-procs <- append(valid-procs, proc)));
reply <- Make-Menu(valid-procs,
\"Select a process that may potentially execute at this point:\");
(if Reply <= size(valid-procs) then
pfunction <- funcall(valid-procs(reply), ’execute)
elseif Reply = size(valid-procs)+2 then
done <- true) %% selects quit
else pfunction.next-procs <- init-procs)
else %% not valid process

done <- true))~%")

AAAAAAAAAAAAAAARALLAAAA%% PRINT-PREDICATE-EXPRESSIONS XAAAANUANAANLLAALANNAAALLY
function print-predicate-expression (o : object) =

if r-equal(o) then
format(true, " = ");
print-expression(argument (o))

elseif r-not-equal{o) then
format(true, " “A= ", tilde);
print-expression(argument (o))

elseif r-greater-than(o) then
format (true, " > ");
print-expression(argument (o))

elseif r-greater-or-equal(o) then
format(true, " >= ");

217

print-expression(argument (o))

elseif r-leas-than(o) then
format(true, " < ");
print-expression(argument (o))

elseif r-less-or-equal(o) then
format (true, " <= ");
print-expression(argument (o))

else
format (true, "not looking at right thing~%")

AARAURARAALAAARAARAARARAAXA%E PRINT-STATEMENTS AAARAARAARARANARAAREAXNLANARLL
function print-statement (stmt : object) =

if assignment-statement(stmt) then

(if ex(x,y,z,¥) (x = pame(LHS(atmt)) & (<x,y>) in FLOW-NAMES

& z = name(RHS(stmt)) & (<z,¥>) in FLOW-NAMES)then
format(true, "assign-object (?#~A,’*"A,’"A) %",
name (RHS (stmt)), name(LHS(stmt)),
arb({y | (x : symbol, y : symbol) x = name(RHS(stmt))
& (<x,y>) in FLOW-NAMES}))

else

format (true, "~A", convert-attr-name(name(LHS(stmt))));

format (true, " <~ ");

print-expression(RHS(stmt)))

elseif display(stmt) then
(if defined?(name-use(stmt)) then
format (true, "format(true, \"“A\\\\pp\\\\ \","A)", tilde,
convert-attr-name(name(name-use(staut))))
elseif defined?(display-set(stat)) then
format (true, "enumerate element over ~%");
print-expression(display-set(stmt));
format(true, " do~%");

format (true, " format(true, \"~A\\\\pp\\\\ \",element)",tilde)
)
% elseif create(stmt) then
% elseif destroy(stmt) then

AAALRANAAAANKANRARRAAAAAAAAL% PRINT-EXPRESSIONS XXAXARRANANZANRARKARANUAL AR
function print-expression (o : object) =

if integer-literal(o) then format(true, "~D", integer-value-of(o))

elseif real-literal(o) then format(true, ""G", real-value-of(o))

elseif true-literal(o) then format(true, "true")

elseif false-literal(o) then format(true, "false")

218

elseif identifier-use(o) then
let (temp : string = undefined,
dot : char = #\.)
temp <- princ-to-string(name(o));
(if dot in temp then
format (true, "“A", convert-attr-name(name(o)))
elseif name(o) in OBJ~NAMES then %% is argument an object name?
format (true, "~“A", name(o))
else
format (true, "’~A", name(o))
)

elseif string-literal(o) then format(true, ""S" ,string-value-of(o))

elseif arithmetic-add(o) then
format (true, "(");
print-expression(argument-1(o));
format (true, " + ");
print-expreassion(argument-2(o));
format (true, ")")

elseif arithmetic-subtract(o) then
format (true, "(");
print-expression(argument-1(o));
format(true, " - ");
print-expression(argument-2(o));
format (txrue, ")")

elseif arithmetic-multiply(o) then
format (true, "(");
print-expression(argument-1(o));
format(true, " * ");
print-expression(argument-2(o));
format (true, ")")

elseif arithmetic-divide(o) then
format (true, "(");
print-expression(argument-1(0));
(if type-integer(type-of-expression(argument-1(o))) then
format(true, " div ")
else format(true, " / "));
format (true, " / ");
print-expression(argument-2(o0));
format (true, ")")

elseif unary-minus(o) then
format (true, "minus(");
print-expression(argument-1(o));
format (true, ")")

elseif boolean-and(o) then
format (true, "(");
print-expression(argument=-1(o));
format(true, " & ");
print-expression(argument-2(0));
format (true, ")")

219

elseif boolean-or(o) then
format (true, "(");
pPrint-expression(argument-1(o));
format (true, " or ");
print-expression(argument-2(o));
format (true, ")")

elseif boolean-not(o) then
format(true, "“A(",tilde);
Print-expression(argument-1(o));
format (true, ")")

elseif compare-equal(o) then
format (true, "(");
print-expression(argument-1(o));
format(true, " = ");
print-expression(argument-2(o));
format (true, ")")

elseif compare-not-equal(o) then
format (true, "(");
print-expression(argument-1(o));
format(true, " “A= ", tilde);
print-expression(argument-2(o));
format (true, ")")

elseif compare-greater-than(o) then
format (true, "(");
Print-expression(argument-1(o));
format(true, " > ");
print-expression(argument-2(o));
format (true, ")")

elseif compare-greater-or-equal(o) then
format (true, "(");
print-expression(argument-1(o));
format(true, " >= ");
print-expression(argument-2(o));
format (true, ")")

elseif compare-less-than(o) then
format (true, "(");
print-expression(argument-1(o));
format(true, " < ");
Print-expression(argument-2(o));
format (true, ")")

elseif compare-less-or-equal(o) then
format (true, "(");
Print-expression(argument-1(o));
format (true, " <= ");
print-expression(argument-2(o));
format (true, ")")

elseif compare-in(o) then

220

format (true, "("); %% don’t want ’argu-name

format (true, "~A", name(argument-1{0)));
format (true, " in ");

format (true, "~A", name(argument-2(0)));
format (true, ")")

elseif compare-for-all(o) then
format (true, "(fa (");
(enumerate name over name-uses(o) do
print-expression(name);
if name ~= last(name-uses(o)) then
format (true, ", ")
);
format (true, ") (");
(enumerate expr over set-arg(o) do
print-expression(expr);
if expr "= last(set-to-seq(set-arg(o))) then
format(true, " &% ™)
);
format (true, " =>"%");
print-expression(argument-1(0));
format (true, "))")

elseif compare-exists(o) then
format (true, "(ex (");
(enumerate vars over name-uses(o) do
format (true, "~A", name(vars));
if vars "= last(name-uses{o)) then
format (true, ", ")
'H
format (true, ") (");
(enumerate expr over set-arg(o) do
print-expression(expr);
if expr "= last(set-to-seq(set-arg(o))) then
format (true, " &°% ")
)H

format (true, "))")

elseif set-union(o) then
format (true, "(");
format (true, ""A", name(argument-1(o)));
format (true, " with copy-object(");
print-expression(argument-2(o));
format (true, "))")

elseif set-diff(o) then
format (true, "(");
format (true, "setdiff(");
format (true, "“A, ", name(argument~1(0)));
print-expression(setbuilder-map(o));
format (true, ")");
format (true, ")")

elseif getitem(o) then

format (true, "(");
format (true, "arb(");

221

lllllIllllIlIllIIIllllllllIlIIlllllllIIIIlIIIIIIllllllllllIIlllIllllllIllIllIlllllIII'IIlFIllIlIllllllIllllllIll!lIllllllllllllllllllllll*

print-expression(setbuilder-map(o));
format (true, "))")

elseif getset(o) then
format (true, "(");
print-expression(setbuilder-map(o));
format (true, ")")

elseif setbuilder(o) then
format (true, "{"A | ("A) ",name(defined-name(o)),name(defined-name(0)));
(enumerate cond over set-diff-condition(o) do
print-expression(cond) ;
if cond "= last(set-diff-condition(o)) then
format (true, " &°% ")
else
format (true, "}"))

RARUALAUARARAAAAAA A A% %LYL PRINT-DELETE-OBJECT~FUNCTION %RAANAANAARAALARAAAUARAAL
%%%4 Writes a function that will clear the object base.

function Print-Delete-Object-Function(Name : string) =

format (true, "function clear-objects() =
(enumerate obj over [obj | (obj : ~“A) “A(obj)] do~%", Name, Name);
format (true, " erase-object (obj))~%")

RARURAARUAAALRAUALANLUARLALAALLA%% PRINT-ATTR-TABLE LUAANARAARAANA AN AAARRAARRL LKL
%% This function is used to print the table that holds the original entity names
%% and attribute names and the converted entity names and attribute names. This
%% function is only used for debugging purposes.

function Pmt() =
enumerate d over ATTR-NAME-TABLE do
format (true, "OLD: ~A, NEW: ~A~%",
d.old-name, d.uniq-name)

function Pon() = %% short for print object name
enumerate d over OBJ-NAMES do
format (true, "~A %", d)

222

C.2 Utilities

The some of the following code was developed by Capt Mary Anne Randour is extremely
useful for REFINE object manipulation.

tt in-package (’RU)
{4 in-grammar (’user)

#||
function symbol-2-index(enum-seq : seq(symbol), val : symbol) : integer =
let (i : integer = 1)
(while (val "= enum-seq{i)) and (i < size(enum-seq)) do i <- i + 1);
(if i > size(enum-seq) then
format (true, "Error: enumeration symbol not defined"));
i

function int-2-char(i : integer) : string =
princ-to-string(code~char(i))

function val (enum-seq : seq(symbol), index : integer) : string =
princ-to-string(enum-seq(index))

(NE

%

%% erases Refine database so that ada-trees are not concatenated together
function erase() =
enumerate o over
[o | (o : OML-object) OML-object(o)] do
erase-object (o)

%

function oml-root () =
up-to-root(arb({w | (v : informal-model)
oml-object(w)}))

%

function pf(filename) =
let(g=find-object(’re::grammar, ’oml))
erase();
parse-file(filename, false, g, g, find-package("RU"));
mcn(oml-root())

%

function do-rule-search() =

rs()

%

223

#l1

File name: menu.re

Author : Capt Mary Anne Randour

Description: Contains functions that will query the user for a selection
from a list of possible choices

Rules: None

Functions: Make-Menu
Make-Object-Menu

History:
13 Aug - Baselined
26 Aug - Added a quit line
1 Sep - Added continue line
I 1#

%
* Given a sequence of symbols and a prompt string, this function displays
the prompt, lists all of the symbols in the sequence, and prompts the

user for a selection. If the selection is not in the proper range
(i.e., between 1 and the size of the sequence), it displays an error
message and reprompts for a selection”

function Make-Menu(Menu-Choices : seq(symbol), Prompt : string) : integer =

let (Response : integer = size(Menu-Choices) + 3)
(while Response > size(Menu-Choices) + 2 or Response < 1 do
format(t, "“s ~%", Prompt);
(enumerate index from 1 to size(Menu-Choices) do
format(t, "°d) “s %", index, Menu-Choices(index))
);
format(t, ""d) Continue ~%", size(Menu-Choices)+1);
tormat(t, "°d) Quit ~%", size(Menu-Choices)+2);
Response <- Read-Integer("");
if Response > size(Menu-Choices) + 2 or Response < 1 then
format(t, “Invalid Response ~%")
}; % end while
Response

%
" Same as above execept it takes a list of objects and uses the name
to display the choices"

function Make-Object-Menu(Menu-Choices : seq(object),
Prompt : string) : integer =

let (Response : integer = size(Menu-Choices) + 3)

224

(while ((Response > (size(Menu-Choices) + 2)) or-else (Response < 1)) do
format(t, ""s ~%", Prompt);
(enumerate index from 1 to size(Menu-Choices) do
format(t, *"d) "s “%", index, name(Menu-Choices(index)))
);
format(t, ""d) Continue ~%", size(Menu-Choices)+1);
format(t, ""d) Quit %", size(Menu-Choices)+2);
Response <- Read-Integer("");
(if Response > size(Menu-Choices) + 2 or-else Response < 1 then
format(t, "Invalid Response “%")
)
); % end while
Response

%
function assign-object(copy-from:symbol, copy-to:symbol, object-type: symbol) =

(enumerate flow-attr over return-attribute-list(find-object(object-type,
copy-from)) do
store-attribute(find-object (object-type, copy-to),
flow-attr,
retrieve-attribute(find-object(object-type, copy-from),
flow-attr))

%

% finds users
function fuab (x: set(object)) =

enumerate user over x do
format (true, " “\\pp\\~%", user)

225

; File name: lisp-utilities.lisp
; Description: Contains lisp utililities

; Rules:

; HNone

; Functions:

; Read-Input

; File-Exists

; RD-On

; Rd-0ff

; other unused functions

; History:
; Baselined - 13 Aug

;33 reads input, returns a number or a string
(defun read-input-orig ()
(let* ((input (read-line))
(stripped (read-from-string input))) ; strips the quotes

(cond
((numberp stripped) stripped)
167 input))))

’

;3 read the input as above, doesn’t bomb if user hits return

;3 Returns either a string or a number

(defun read-input ()

(let* ((input (read-line))
(stripped (read-from-string input nil))) ; strips the quotes,

; doesn’t return error
; 1f just hit return

(cond
((numberp stripped) stripped)
(t input))))

;; Tests if the given file-name exists
(defun File-Exists (file-name)
(cond ((probe-file file-name) t)
(t nil))

226

;;; These functions have been handed down from 7?7

;;; redirect *standard-output* to a file, format statements will write
;;; to the specified file. It’s turned off by RD-0ff
(defun RD-On (file)
(setq *old-std-output* *standard-output#
gtandard-output# (open file

:if-exists :supersede
:if-does-not-exist :create
:direction toutput)))

;33 redirect *standard-output* to *old-std-output#*
(defun RD-0ff ()
(cond ((streamp *old-std-output#)
(close *standard-output*)
(setq *standard-output* *old-std-output*))
Ccod»n

;; Not used yet

;33 write output to a file

(defun write-report (x file)
(with-open-file (stream file :direction :output)
(write-report-to-stream stream x)))

;33 redirect *error-output* to a file
(defun Error-RD-On (file)
(setq *old-err-output* *error-output*
error-output (open file

:if-exists :supersede
:if-does-not-exist :create
:direction routput)))

ii; redirect *error-output* to *old-err-outputs*
(defun Error-RD-0ff ()
(cond ((streamp *o0ld-std-output*)

(close *error-output#)

(setq *error-output* *old-err-output#))

CcOd N

227

i3 redirect *debug-io* to a file
(defun Debug-RD-On (file)
(setq *old-debug-io* *debug-io*
debug-io (open file

:if-exists :supersede
:if~does-not-exist :create
:direction toutput)))

;33 redirect *debug-io* to *terminal-io*
(defun Debug-RD-0ff ()
(cond ((streamp *old-std-output#*)
(close *debug-io*)
(setq *debug-io* *old-debug-io*))
CcOdN

228

t1 in-package("RU")
! in-grammar (’user)

2l
File name: read~utilities.re

Description: Contains functions that read in different data types. Tbey perfrom all
type checking so the calling program is guaranteed to get a value of the correct
type. The read with defaults allows the calling program to send a default value.
If the user enters return, this value is returned.

Rules:
None

Functions:
Read-String
Read-Integer
Read-Real
Read-Symbol
Read-Boolean
Read-Any-Type
Read-Yes-0Or-No
Read-String-Default
Read-Integer-Default
Read-Real-Default
Read-Symbol-Default
Read-Boolean-Default
Read-Any-Type-Default

History:
13 Aug - Baselined
21 Aug - Changed formats to use “a instead of “s so the " are not
displayed as part of the prompts.

var Null-Value : any-type = ""
% what read-input returns if given a carriage return

Used to tell the valid types that can be read using these functions

This will allow programs to test if a symbol is in Valid-Types so it cam build
the function call and use the lisp funcall call to invoke the proper program.
This avoids big if-then-elseif statements "

var Valid-Types : set(symbol) = {’string, ’integer, ’real, ’symbol,
’boolean, ’any-type}

1% Read Functions

% Contains functions to read in data of a specific data type. If the input is
% not valid, it reports the error, and prompts for another value

%

229

function Read-String(Prompt : string) : string =
(if ~“empty(Prompt) then
format(t, "“A: ", Prompt)

);
let { str : any-type = read-input())
(if lisp::numberp(str) then % if a number was read,
str <- lisp::princ-to-string(str) % convert it to a string
);

(while “lisp::stringp(str) do
format (t, "~%Invalid input, try again: ");
str <- read-input ()

);

str

%
function Read-Integer (Prompt : string) : integer =
(if “empty(Prompt) then
format(t, "~“A:", Prompt)
);
let (int : integer = read-input())
(vhile “lisp::integerp(int) do
format(t, "~%Invalid input, try again: ");
int <- read-input()
);

int

%
function Read-Real (Prompt : string) : real =
(if “empty(Prompt) then
format(t, "“A: ", Prompt)
);
let (real-num : real = read-input())
(vhile ~lisp::floatp(real-num) do
format(t, "~%Invalid input, try again: ");
real-num <- read-input()
);

real-num

%
function Read-Symbol(Prompt : string) : symbol =
(if “empty(Prompt) then
format(t, "~A: ", Prompt)
);
let (sym : string = read-input())
(vhile “lisp::stringp(sym) do
format(t, "~%Invalid input, try again: ");
sym <- read-input()
);
string-to-symbol(lisp: :string-upcase(sym), "RU")
% NOTE: I convert the string to upper case so that it can be compared
% to other symbols
% string-to-symbol returns a symbol that is case sensitive
% (it is quoted by |’s)

230

function Read-Boolean(Prompt : string) : boolean =
(if “empty(Prompt) then
format(t, "“A: ", Prompt)
);
format(t, "(T/t for true, F/f for false): ");
let(t-or-f : string = read-input())

(vhile ~(t-or-f in {"F", "f", "T", "t"}) do
format(t, "~%Invalid input, try again: ");
t-or-f <- read-input()

);

t-or-f in {"T", "t"}

4
function Read-Any-Type(Prompt : string) : any-type =
(if “empty(Prompt) then
format(t, ""A: ", Prompt)
);

read-input ()

%

" This function had problems if the user entered a number. I now keep
reading new input if I read a number. I tried using stringp(y-or-no)
and-then y-or-no in {...}, but that didn’t help"

2]

function Read-Yes-Or-No(Prompt : string) : boolean =

% Returns true if user enters y or Y, false if user enters n or N
(if “empty(Prompt) then
format(t, ""A ", Prompt)
);
let (y-or-no : string = read-input())

(vhile lisp: :numberp(y-or-no) do
format(t, "~%Invalid input, try again: ");
y-or-no <- read-input ()

);

(vhile y-or-no "'in {nyn' nyn' unn’ n"n} dO
format(t, "~%Invalid input, try again: ");
y~or-no <~ read-input();

(vhile lisp: :numberp(y-or-no) do
format(t, "“%Invalid input, try again: ");
y-or-no <- read-input()

)
);

y-or-no in {"Yll' llyl!}
s

% Here’s another way to do this
function Read-Yes-Or-No(Prompt : string) : boolean =
lisp: :y-or-n-p(prompt)

43 Read Functions With Defaults
%%4% Read functions that allow for a default value

231

%
function Read-String-Default(Prompt : string, Default : string) : string =
(if “empty(Prompt) then
format(t, "~A", Prompt)
);
format(t, " (TA): ", default);
let (str : any-type = read-input())
(if lisp::numberp(str) then % if a number was read,
str <- lisp::princ-to-string(str) % convert it to a string
);
(vhile “stringp(str) and ~(lisp::equal(str, Null-Value)) do
format (t, "~%Invalid input, try again: ");
str <- read-input()
);
if lisp::equal(str, Null-value) then
Default
else
str

% For reading in integers and real numbers, read in as a string (so it can be

% compared to the null-ialue and check if the string is really an integer

% or real number (using the read-from-string function). Read-from-string

% returns two values, the first is vhat’s in the string, the second is the index
% of the first character NOT read.

%
function Read-Integer-Default (Prompt : string, Default : integer) : integer =
(if “empty(Prompt) then
format(t, "“A:", Prompt)
);
format(t, " (“d): ", default);
let (int : string = lisp::read-line())
(vhile “lisp::integerp(lisp::read-from-string(int)) and int “= Null-Value do
format(t, "~%Invalid input, try again: ");
int <- lisp::read-line()
s
if int = Null-value then
Default
else
lisp: :read-from-string(int)

%
function Read-Real-Default(Prompt : string, Default : real) : real =
(if “empty(Prompt) then
format(t, "“A: ", Prompt)
);
format(t, " ("d): ", default);
let (real-num : string = lisp::read-line())
(vhile ~1isp::floatp(lisp::Read-from-string(real-num)) and real-num ~= Null-Value do
format(t, "“%Invalid input, try again: ");
real-num <- lisp::read-line()
);
if real~num = Null-value then
Default
else

232

lisp: :read-from-string(real-num)

%
function Read-Symbol-Default(Prompt : string, Default : symbol) : symbol =

(if “empty(Prompt) then
format(t, ""A: ", Prompt)
)i
format(t, " ("A): ", default);
let (sym : string = read-input())
(while ~lisp::stringp(sym) and sym ~= Null-Value do
format(t, "~“%4Invalid input, try again: ");
sym <- read-input()
);
if sym = Null-value then
Default
else
string-to-symbol (lisp: :string-upcase(sym), "RU")
% ROTE: I convert the string to upper case so that it can be compared to
% other symbols string-to-symbol returns a symbol that is case sensitive
% (it is quoted by |’8)

%

function Read-Boolean-Default(Prompt : string. Default : boolean) : boolean =
(if “empty(Prompt) then
format(t, ""A ", Prompt)
);
format(t, "(T/t for true, F/f for false:) ");
format(t, " (TA): ", default);
let(t-or-f : string = read-input())
(while ~“(t-or-f in {"F", "£", "T", "t"}) and t-or-f ~= Null-Value do
format (t, "~%Invalid input, try again: ");
t-or-f <- read-input()
);
if t-or-f = Null-value then
Default
else
t-or-f in {"T", "t"}

%
function Read-Any-Type-Default(Prompt : string, Default : any-type) : any-type =
(if “empty(Prompt) then
format(t, "“A: ", Prompt)
)s
format(t, " (TA): ", default);
let (ans : any-type = read-input())

if lisp::equal(ans, Null-value) then % use the lisp::ejual incase of strings
Default

else
ans

233

! in-package("RU")
!! in-grammar(’user)

t 11
File name: obj-utilities.re

Description: This file contains functions useful when manipulating objects,
regardless of the domain model being used.

Rules:
none

Functions:

Return-Attribute-List

Tell-Set-Seq-Type

Tell-Set-Seq-Binding

Get-Attribute-List (For testing and debugging)
Tell-Type

Copy-0Object

History:
Baselined - 13 Aug

L1s

%4

" The type-map gives a conversion from the Refine representation of
data types to simple symbols (Note: strings are handled differently so
they aren’t in this list"

var Type-Map : map(symbol, symbol) =

{|l ’re::powerset-op -> ’sget,
’re: :powersequence-op -> ’seq,
’re::symbol-op => ‘’symbol,
’re::real-op -> ’real,
’re::integer-op => ‘’integer,
’re: :boolean-op ~> ’boolean,
’re::any-type-op -> ’any-typel)}

%
" REFINE’s attributes"”
var predefined-attributes : set(symbol) =
{’RE: : --TOP-LEVEL-PREPENDUM--,
’RE: : STORED~PROPERTIES,
*RE: : BROWSER-MENU-STRING-FOR-NAMED-0BJECT--SAME-PACKAGE,
’RE: : BROWSER-MENU-STRING-FOR-NAMED-0BJECT--~0TRER-PACKAGE,
’RE: : ORDERED-CHILDREN-ATTRIBUTES,
’RE: : CONSTRUCTION-FUNCTION-ATTRIBUTE-ARGS,
’RE: : CONSTRUCTION-FUNCTION,
’RE: :REFINE-INTERNAL?,
’RE: : QUOTED?,
’RE: :LISP-GETFN,
’RE: :LISP-INITIALIZE,
"RE: : LISP-FUNCTION,
’RE: : ALREADY-WARNED~-ABOUT,

234

’RE: : SUBPART-OF,

*RE: : SUBPARTS,

’RE: : COMPILATIONS,

’RE: : ZL-DOCUMENTATION,
’RE: :USED-BY,

’RE: :MENTIONED-BY,

’RE: :DATA-TYPE,

*RE: : CHILDREN-ENVIRONMENTS,
’RE: : PARENT-ENVIRONMENT,
’RE: :COPY-OF,

’RE: : BINDING-VALUE-OF,
’RE: :PARENT-LINK-NAME,
’RE: :PARENT-LINK,

’RE: :CLASS,

’RE: :ELEMENT-OF,

’RE: : PROPS-FROM-READER}

" Given an object, returns a set of bindings that represent the attributes
removing the predefined attributes"

function Return-Attribute-List(0bj : object) : set(re::binding) =

{atrs | (atrs) (atrs in class-attributes(instance-of(obj), true)) &
“(name(atrs) in predefined-attributes)}

%

" Returns all of the subclasses of an object, NOT including the original
object class"

function Get-SubNodes(obj-type: re::binding) : set(re::binding) =

let (tempset : set(re::binding) = class-subclasses(obj-type, false))
tempset less obj-type % don’t include the original object type

%

" This function determines the type of the set/seq attribute. If the type
is an object, it returns the object class name"

function Tell-Set-Seq-Type(attr : re::binding) : symbol =
let (its-type : object = re::base(re::range-type(re::data-type(attr))))
if re::class(its-type) = ’re::binding-ref then
re::bindingname(its-type) % returns ’string or ’(object-type)
else
Type-Map(re: :class(its-type))

%

" Returns the type of a set or sequence as a binding (assumes its
some object type)"

function Tell-Set-Seq-Binding(attr : re::binding) : re::binding =
re::ref-to(re::base(re: :range-type(re: :data-type(attr))))

235

" displays all of the user-defined attributes and their types. If wvant to see
all the attributes, don’t comment any lines, if only want to see the
user-defined attributes, comment out the line: if “(name(atr) in
predefined-attributes) then"

function Get-attribute-list(obj : object) =
let (attr-list : set(re::binding) = class-attributes(instance-of(obj), true))
format(t, "attributes are: “%");
enumerate atr over attr-list do
% if “(name(atr) in predefined-attributes) then
format(t, "attr: "s type “s “%", atr, tell-type(atr))

*
" Goes through the abstract syntax tree for the representation of the attribute
to find out the attribute’s data type. Since all attributes are maps, we need
to look at the range-type of the data-type. Both objects and strings have the
same representation at this level so there’s a special test for those. Other-
wise, it uses the Type-Map to tramnslate the type to a simpler-form."

function Tell-Type(attr : re::binding) : symbol =
let (its-type : object = re::range-type(re::data-type(attr)))

if re::class(its-type) = ’re::binding-ref then
if defined?(re::bindingname(ite-type)) and-then
re::bindingname(its-type) = ’string then
’string
else
’object
else
Type-Map(re: :class(its~type))

" makes a copy of an object, the calling routine must name the new object
used instead of copy-term because copy-term cannot be used with unique names
classes see refine manual pg 3-194. An alternative could be to undefine the
name, then copy it. This is a problem if the object contains any named
objects. This function handles any case (that I can think of)"

function Copy-Object(from-obj : object) : object =

let (Attrs : set(re::binding) = Return-Attribute-List(from-obj),
To-0bj : object = make-object(name(instance-of (from-obj))))

(enumerate attrib over Attrs do

% if it’s an object, copy the object and assign the new one
% to the attribute
(if tell-type(attrib) = ’object then
let (sub-obj : object =
Copy-Object (retrieve-attribute(from-obj, attrib)))
store-attribute(to-obj, attrib, sub-obj)

236

elseif tell-type(attrib) = ’set then

let (temp-set : set(any-type) = {})
% it it is a set of objects, copy each object,
% otherwise copy the set
(if defined? (Find-Object-Class(Tell-Set-Seq-Type(Attrib))) then %object
enumerate Set-Item over Retrieve-Attribute(From-Obj, Attrib) do
Temp-Set <- Temp-Set with Copy-Object(Set-Item)
else
Temp-Set <- Retrieve-Attribute(From-Obj, Attrib)
);
Store-Attribute(To-0bj, Attrib, Temp-Set)

elseif tell-type(attrib) = ’seq then

let (temp-seq : seq(any-type) = [1)
% if it is a seq of objects, copy each object,
% otherwise copy the seq
(if defined? (Find-Object-Class(tell-set-seq-type(attrib))) then
%= object
enumerate seq-item over retrieve-attribute(from-obj, attrib) do
temp-seq <- append(temp-seq, copy-object(seq-item))
else
temp-seq <~ retrieve-attribute(from-obj, attrib)
);
store-attribute(to-obj, attrib, temp-seq)

else %not a set, seq, or object
store-attribute(to-obj, attrib, retrieve-attribute(from-obj, attrib))
) % end if

); %end enumerate

To-0bj % return the object

237

1! in-package("RU")
!t in-grammar (’user)

%% This object class is defined here as an initialization. The actual OML-obj
%% is further defined in the translated executable OML specification.

var OML-0bj : object-class subtype-of user-object
var Changes-Made : boolean = false

%%var Spec-Parts : map(OML-0bj, seq) = {]I}

#l|
File name: modify-obj.re

Description:
The functions in this file allow the user to modify objects - delete
objects, edit existing objects, and add new objects

Rules:
Edit-An-Object
Add-An-Object
Delete-An-Object

Functions:
Modify-Some-Object
Modify-Object
Update-Attr
Find-Subnode
Make-New-Object
Read-Set
Read-Seq
Is-Valid-New-Type
Add-Object
Delete-Object

History:
Baselined 13 Aug
Nk

%% Rules that can be performed by the user

rule Edit-An-Object(X: object)
% Do not change the name to edit-object, it exists already)
true --> Modify-Some-Object (x)

rule Add-An-Object(X: Object)
true --> Add-Object(x)

rule Delete-An-Object(X: Object)
true --> Delete-Object(X)

%
" Asks the user for the name of the object, checks that it is a subclass of
component object (i.e., its a subsystem or primitive domain object), and then

238

Modifies the object"
function Modify-Some-Object(X : object) =

let (obj-to-edit : symbol =
Read-Symbol-Default("Enter the name of the object to edit", Name(x)))

let (Edit-0Obj : object = find-object(’OML-0bj, obj-to-edit))
if defined?(Edit-0bj) then
Changes-Made <- true;
Edit-Obj <- Modify-Object (Edit-Obj)
else
format(t, "Object “s is not a current object that can be edited™%", obj-to-edit)

%
" Given an object, goes through each attribute that’s not one of the predefined
attributes and gets a value for it"

function Modify-Object (obj : object) : object =
(enumerate atr over return-attribute-list(obj) do
update-attr(obj, atr)
)3
Obj

%
" Given an object and an attribute, finds the data type of the attribute,
calls the appropriate read function, and stores the value in the attribute.
If the attribute is an object, it first creates an object of that type
(re::bindingname(re: :range-type(re: :data-type(attribute-binding)))) and
then gets the information for that object "

function Update-Attr(for-obj : object, attrib : re::binding) =

let (attr-type : symbol = tell-type(attrib),
prompt : string = concat("Eanter ", symbol-to-string(name(attrib))),
current-value : any-type = Retrieve-Attribute(for-obj, attrib))

if attr-type = ’real then

store-attribute(for-obj, attrib, read-real-default(prompt, current-value))
elseif attr-type = ’integer then

store-attribute(for-obj, attrib, read-integer-default(prompt, current-value))
elseif attr-type = ’string then

atore-attribute(for-obj, attrib, read-string-default(prompt, current-value))
elseif attr-type = ’boolean then

atore-attribute(for-obj, attrib, read-boolean-default(prompt, current-value))
elseif attr-type = ’symbol then

store-attribute(for-obj, attrib, read-symbol-default{prompt, current-value))
elseif attr-type = ’any-type then

store-attribute(for-obj, attrib, read-any-type-default(prompt, current-value))
elseif attr-type = ’object then

if defined?(current-value) then %object already exists, just update it

store-attribute(for-obj, attrib, Modify-Object(current-value))
else

239

store-attribute(for-obj, attrib,
Make-Nev-Object(re::ref-to(re: :range-type(re: :data-type(attrib)))))
elseif attr-type = ’seq then
format(t, "“8~%", prompt); % Read-Seq doesn’t print this prompt
store-attribute(for-obj, attrib, read-seq{attrib, current-value))
elseif attr-type = ’set then
format(t, "“8”%", prompt); % Read-Set doesn’t print this prompt
store-attribute(for-obj, attrib, read-set(attrib, current-value))
else
format(t, "Unrecognized type "8 %", attr-type)

#|1
%
"Sets the spec object to be the parent of the new object

could instead have a rule: i

true --> Parent-Expr(Kid) = parent & kid in spec-parts(parent)"

function Set-To-Parent(Kid, Parent : object) =
Spec-Parts(Parent) <~ append(Spec-Parts(Parent), Kid)

%

" Removes the kid from the parent object"

function Remove-From-Parent(Kid, Parent : object) =
Spec-Parts(Parent) <-
[objs | (objs : object) objs in Spec-Parts(Parent) &
name(objs) ~“= Name(Kid)] %Remove from application

K

%

" Finds all of the subclasses of of an attribute and if more than one exists,
asks the user which one he wants. Class-Subclasses returns the current class"

% first, get the right object class (it may have subclasses)
let (subnodes : seq(re::binding) =
set-to-seq(Class-Subclasses(attrib, false) less attrib))
% remove the current class (attrib) from the list of all subclasses
let (Object-wanted : re::binding = re::*undefineds)
% the type of object to create

|
#|1
function Find-SubNode (attrib : re::binding) : re::binding =
(it SubNodes = nil then
% if it doesn’t have any subtypes, the set is nil
Object-wanted <- attrib
elseif size(subnodes) > 1 then
% it has subobject types, find out which one to use
let (response : integer =
Make-Object-Menu(subnodes, "Enter shich type of object you want to build"))

Object-wvanted <- subnodes(response)

else % there’s only one subtype of object, this probably shouldn’t happen
Object-wanted <- subnodes(1)

240

)i
(let (subsubnodes : set(re::binding) = Class-Subclasses(object-wvanted, false))
if subsubnodes ~= nil and-then size(subsubnodes) > 1 then
% The object selected has subnodes, find the object class at this level
object-wanted <- find-subnode(object-wanted)

);

object-wanted

" Given an attribute that represents an object, creates an object of that type and
gets all of the attribute data "

function Make-New-Object(attrib : re::binding) : object =

let (temp-obj : object = make-object(name(Find-Subnode(attrib))))
Temp-0bj <- Modify-Object(temp-obj);
Temp-obj

" Reads in a group of items of the given type and puts them into a set. Since a set
may already exist, it first asks if the user wants to change the original set”

function Read-Set(attr : re::binding, current-set : set(any-type)) : set(any-type) =

let (change : boolean = Read-Yes-Or-No("Do you want to change the current set?"))
if “change then
current-set % return the current value
else
let (temp-set : set(any-type) = {},
of-type : symbol = Tell-Set-Seq-Type(attr))

format(t, "creating a set of type ~s ~%", of-type);
(vhile Read-Yes-Or-No("Add another element? ") do
if of-type = ’integer then
temp-set <- temp-set with Read-Integer("(an integer)")
elseif of-type = 'real then
temp-set <- temp-set with Read-Real("(a real number)")
elseif of-type = ’string then
temp-set <- temp-set with Read-String("(a string)")
elseif of-type = ’symbol then
temp-set <- temp-set with Read-Symbol("(a symbol)")
elseif of-type = ’boolean then
temp-set <- temp-set with Read-Boolean("(a boolean)")
elseif of-type = ’any-type then
temp-set <- temp-set with Read-Any-Type("(any-type)™")
else ¥ must be an obj
temp-set <- temp-set with Make-New-Ubject(Tell-Set-Seq-Binding(attr))

); % end while
temp-set

241

" Reads in a group of items of the given type and puts them into a sequence. Since a
sequence may already exist, it first asks if the user wants to change the original
sequence"

function Read-Seq(attr : re::binding, current-seq : seq(any-type)) : seq(any-type) =

let (change : boolean = Read-Yes-Or-No("Do you want to change the current sequence?"))
if “change then
current-seq % return the current value
else

let (temp-seq : seq(any-type) = [],
of-type : aymbol = Tell-Set-Seq-Type(attr))

format(t, "creating a seq of type “a “%", of-type);
(wvhile Read-Yes-Or-No("Add another element? ") do

if of-type = ’integer then

temp-seq <- append(temp-seq, Read-Integer(''(an integer)"))
elseif of-type = ’real then

temp-seq <- append(temp-seq, Read-Real("(a real)"))
elseif of-type = ’string then

temp-seq <- append(temp-seq, Read-String("(a string)"))
elseif of-type = ’symbol then

temp-seq <- append(temp-seq, Read-Symbol("(a symbol)"))
elseif of-type = ’boolean then

temp-seq <~ append(temp~seq, Read~Boolean("(a boolean)"))
elseif of-type = ’any-type then

temp-seq <- append(temp-seq, Read-Any-Type("(any-type)"))
else % must be an object

temp-seq <- append(temp-seq, Make-New-Object(Tell-Set-Seq-Binding(attr)))

); %end while
temp-seq

%%%% Functions for adding new objects:

%
" The new object type must be a subclass of OML-0bj."

function Is-Valid-New-Type (Obj-Type : symbol) =
Find-Object-Class(Obj-Type) in
Class~-Subclasses(Find-Object-Class (’OML-0bj), true)

" Asks for the name of the application for which the new object is to be a part, if
the application exists, it then asks for a newv object name. It checks that the
object name does not exist. It then asks for the type of object to be built, if it
is a valid type, it builds a new object, gets the data, and assigns it to the
application.”

function Add-Object (X : object) =
let (Applic-Name : symbol = Read-Symbol-Default("Enter the applicatior name", name(x)))

242

if defined?(find-object(’OML-0bj, applic-name)) then
let (obj-type : symbol = Read~Symbol("What type of object do you vant to create?"))

if Is-Valid-New-Type(Obj-Type) then
let (Obj-Name : symbol = Read-Symbol("What is the object’s name?"))

if undefined?(find-object(’OML-0bj, Obj-Name)) then
let (New-Obj : object = Modify-Object(make-object(Obj-Type)))
Changes-Made <- true;
Set-Attrs(New-0bj, ’name, Obj-Name) %
% Set-To-Parent (New-0bj, find-object (’OML-0bj, Applic-name))
else
format(t, "An object named “s already exista~%", Obj-Name)

else
format(t, ""s is not a valid object type~%", obj-type)

else
format (t, "Application "8 does not exist in the object base."%", applic-name)

%4%% Function for erasing objects:

%

" Asks for the object to be deleted, checks that the object exists in the object base,
then asks if the user is sure he vants to erase that object, if he answers yes, the
object is removed from the application definition, and erased"

function Delete-Object (A : object) =
let (Obj-Name : symbol = Read-Symbol("What object’s do you want to delete?"))
let (Obj : object = Find-Object(’OML-Obj, Obj-Name))
if defined?(0Obj) then
(if Read-Yes-Or-No(concat("Are you sure you wvant to detete ",
Symbol-To~String(Obj-Name), " ")) then
Changes-Made <~ true;
% Remove-From-Parent(0Obj, Parent-Expr(0bj));
erase-Object (Obj)
)
else
format(t, "“s8 is not in the object base~%", Obj-Name)

243

Appendiz D. Home Heater Problem
D.1 Heater Problem Analysis

The Home Heating System problem comes from the problem set for the Fourth International
Workshop on Software Specification and Design, and is based on a problem by S. White presented

to 1984 Embedded Computer System Requirement Workshop.

D.2 Problem Statement

“The controller of an oil hot water home heating system regulates in-flow of heat, by turning
the furnace on and off, and monitors the status of combustion and fuel flow of the furnace system,
provided the master switch is set to “heat” position. The controller activates the furnace whenever
the home temperature, t, falls below £, - 2 degrees, where ¢, is the desired temperature set by the

user. The activation procedure is as follows:

1. the controller signals the motor to be activated;

2. the controller monitors the motor speed and once the speed is adequate it signals the ignition

and oil valve to be activated.

3. the controller monitors the water temperature and once the temperature is reached a pre-
defined value it signals the circulation valve to be opened. The heated water then starts to

circulate through the house.

4. a fuel flow indicator and an optical combustion sensor signal the controller if abnormalities

occur. In this case the controller signals the system to be shut off.

5. once the home temperature reaches ¢, + 2 degrees, the controller deactivates the furnace by

first closing the oil valve and then, after 5 seconds, stopping the motor.

In addition the system is subject to the following constraints:

1. minimum time for furnace restart after prior operation is 5 minutes.

244

2. furnace turn-off shall be indicated within 5 seconds of master switch shut off or fuel flow shut

off. (18)”

D.3 Entity Relationship Model

The ERM in Figure 23 shows the entities required to specify the home heater. The controller

Fuel Flow Combustion| Five Min Five Sec
Sensor Sensor Timer Timer
Status Sensor Timer '————Qﬂ"ﬂ

Master [Monitors Controller
Switch

Status Speed

nito osition:

Motor

mm.o.m vawe Saws
— S

[o]]] Water
Valve Vaive

Water Air

Figure 23. Home Heating System: Entity Relationship Model

has two attributes, ¢, the desired air temperature, and ¢,,, the water temperature that must be
reached before water from the boiler will circulate throughout the heater system. The controller
monitors certain entities and changes the settings on others. Note that the master switch, the
thermostats, and the sensors are external entities, and that their values cannot be changed by the

controller. The meaning of the status attribute depends on the entity that it is associated with.

245

The status of a sensor is either safe or unsafe. The status of the master switch is either “off” or

“heat”, and valve’s status is either “open” or “closed”. The status of both the timer and motor is

either “off” or “on”.

D.4 State Transition Model

This problem easily fits a classical state transition model. The problem statement gives an

activation procedure that shows conditions that must be met before the system advances to the

next state. Figure 24 depicts the activation and shutdown procedures developed from the problem

statement by Blankenship (6:Appendix C). The diagram has been modified to redirect events

E1

E2, E8

E3, E8

E4, E8,

E9, E10

ES, E8
E9, E10

E6

E7

E6

11

12

interna!l Events

Master-Switch-On
Motor-Turned-On

. Oll-ignitied
Water-Valve-Opened
Done-Hoating-Water
Motor-Turned-Off
Done-Waiting
Master-Switch-Off
Abnormal-Fuel

10. Abnormatl-Combustion
11. System-is-Reset

12. System-is-Oft

PONDAMLN

E11,
E12

E9

External Events

. Switch-Turned-On

. Alr-Temp-Below-Preset

. Adequate-Motor-

. Water-Temp-Above-Preset
. Alr-Temp-Above-Preset

. Five-Sec-Timer-Expires

. Five-Min-Timer-Expires

Switch-Turned-Off
Unsafe-Combustion-Sensor

E1 0 Unsafe-Fuel-Sensor
E11. Reset-System
E12. System-Turned-Oft

Figure 24. Home Heating System: State Transition Model

246

dealing with error conditions. The system waits in each state for changes in the environment that

trigger transitions to the next state.

Nine states were chosen to model this problem:

off: heating system is not on
idle: heating system is on, but it is not heating
motor-on: (step one of the activation process) water pump (motor) activated

water-heating: (step two of the activation process) water pump speed is adequate, fuel

ignited, oil valve open

running: (final step of the activation process) activation complete, house being heated
shutdown: house temperature is sufficient, shut down the system

wait-5-min: constraint one: minimum cycle time

abnormal-shutdown: an error event has occurred and the system is beginning to shut

down

hold: a state where the system waits for error correction or for the system to be turned off

The operation of the home heating system can be described by the nine states listed above.
Initially, the controller is in the OFF state. When the master switch is placed in the “on” position
(Event E1), the controller transitions to the IDLE state (Event 1). There are two possible transitions

out of the IDLE state:

1. Should the master switch be returned to the “off” position (Event E8), the controller will

transition to the OFF state (Event 8).

2. Should the air temperature drop to two degrees below the desired temperature (Event E2),

the controller will transition to the MOTOR-ON state (Event 2).

In the MOTOR-ON state, the water circulation pump is activated. The system will remain in

this state until the pump’s speed is adequate (Event E3), then the controller will signal the ignition,

247

open the oil valve, and transition to the WATER-HEATING state (Event 3). Should the master switch
be placed in the “off” position (Event E8) while the controller is in the MOTOR-ON state, the pump

will be deactivated and the controller will transition to the oFF state (Event 8).

In the WATER-HEATING state, the controller waits for one of four events:

1. When the water temperature reaches the preset temperature (Event E4), the controller will

open the water valve, and transition into the RUNNING state (Event 4).

2. If the master switch is returned to the “off” position (Event E8), the controller will close
the water and oil valves, start the five second timer, and transition into the ABNORMAL

SHUTDOWN state (Event 8).

3. Should the fuel flow sensor detect an abnormal condition (Event E9), the controller will
close the water and oil valves, start the five second timer, and transition into the ABNORMAL

| SHUTDOWN state (Event 9).

| 4. Should the combustion sensor detect an abnormal condition (Event E10), the controller will
close the water and oil valves, start the five second timer, and transition into the ABNORMAL

SHUTDOWN state (Event 10).
In the RUNNING state, the controller waits for one of four events:
1. When the air temperature is two degrees greater than the desired temperature, (Event E5),

the controller will close the oil valve, start the five second timer, and transition into the

SHUTDOWN state (Event 5).

2. If the master switch is returned to the “off” position (Event E8), the controller will transition

to the ABNORMAL SHUTDOWN state (Event 8).

3. Should the fuel flow sensor detect an abnormal condition (Event E9), the controller will

close the water and oil valves, start the five second timer, and transition into the ABNORMAL

SHUTDOWN state (Event 9).

4. Should the combustion sensor detect an abnormal condition (Event E10), the controller will
close the water and oil valves, start the five second timer, and transition into the ABNORMAL

SHUTDOWN state (Event 10).

The ABNORMAL SHUTDOWN state waits for the five second timer to expire (Event E6), and
then shuts the water pump motor off, closes the water valve, turns the ignition off, and transitions

to the HOLD state (Event 6).

The SHUTDOWN state waits for the five second timer to expire (Event E6), and then shuts
the water pump motor off, closes the water valve, and turns the ignition off. The controller starts

the five minute timer and transitions to the WAIT-5-MINUTES state (Event 6).

The WAIT-5-MINUTES state keeps the heater system from entering another heating cycle for
five minutes. When the timer expires (Event E7), the controller transitions into the IDLE state

(Event 7).

The HOLD state is entered when the heater system has been shut down because of an unsafe
sensor reading or because the master switch was turned off during the heating cycle. The controller
will remain in this state until the system is reset (Event E11) when it will transition into the IDLE
state (Event 11). If the master switch is turned off (Event E12), the controller will transition into
the OFF state (Event 12). The HOLD state was included to prevent the controller from transitioning
through the first three activation states before sensing an unsafe condition that may not have been

corrected.

249

D.5 Heater Problem OML Specification
%%Z%%%%%%%%%%%%

Ay e
%%% File-Name : h.spec (Home-Heater Specification) YA
Whih W%
%%% Authors : Capt Mary Boom, Capt Brad Mallare %%%
Wh% W%
%%4% Purpose : OML specification for the home heater problem. YA
pANA Wh%
%%% Unified Abstract Model Components : YANA
YAAA Entities, Relationships, States, Events, Behaviors, and W%
YANA Relation-Tables AN
Wi pANA
%A% Operation : After loading the translation code (trans-oml.fasl4) and %%%
%%% all the other code that it is dependent on, this OML specification WA
%4% can be translated into an executable specification by typing the W%
%%% following command at the Refine prompt: Wh%
W% W%
%h% (convert "<your-OML-file-name>") YAAA
WA whh
%4% The name of the generated executable specification will be displayed %%%
YAAA on the screen. Additionally, the executable specification will be %%%
YA automatically compiled and loaded. YANA
YA A4
Y¥43 After this file is translated, compiled, and loaded into Refine, %4%
YANA it can be executed by typing the following command at the Refine yAY
YAAA prompt: yAYA
WA (sim) WA%
W% Wh%

LY YA Y YA A AN Y YA S TN AN A NSNS NSNS S ARy YA AN A A AR Y YA Y AN AN YA AR A A Yy oA
specification home-heater
%WA%%% ENTITIES

SENSOR class-of entity
type : external
parts
status : symbol range {safe, unsafe}

FUEL-SENSOR instance-of SENSOR
values
status : safe

COMBUSTION-SENSOR instance-of SENSOR
values
status : safe

VALVE class-of entity
type : external
parts

status : symbol range {open, closed}

WATER-VALVE instance-of VALVE
values
status : closed

OIL-VALVE instance-of VALVE
values
status : closed

TIMER class-of entity
type : external
parts
status : symbol range {off, on}

FIVE-MIN-TIMER instance-of TIMER
values
status : off

FIVE-SEC-TIMER instance—of TIMER
values
status : off

THERMOSTAT class-of entity
type : extermal
parts
temp : integer range {0 .. 280}

AIR instance-of THERMOSTAT
values
temp : 60

WATER instance-of THERMOSTAT
values
temp : 60

MASTER~SWITCH instance-of entity
type : external
parts
status : symbol range {on, off} init-val off

MOTOR instance-of entity
type : external

parts
status : symbol range {on, off} init-val off;
speed : symbol range {adequate, inadequate} init-val inadequate

IGNITION instance-of entity
type : external
parts
status : symbol range {on, off} init-val off

251

CONTROLLER instance-of entity
type : internal

parts
tr : integer range {32 .. 130} init-val 70; % preset air temp
tv : integer range {32 .. 280} init-val 180 %/ preset water temp

%%%%% RELATIONSHIPS %%%%%

ACTIVATES instance-of relationship
type : general
cardinality : 1-1

MORITORS instance-of relationship
type : general
cardinality : 1-1

POSITIONS instance-—of relationship
type : general
cardinality : 1-1

SETS instance-of relationship

type : general
cardinality : 1-1

UAAAY% STATES WAAAA%

%% The first state in an OML spec is assumed to be the initial state

OFF instance-of state

state-space : master-switch.status = off
IDLE instance-of state
state-space : master—switch.status = on;
five-min-timer.status = off;
fiva-gsec-timer.status = off

MOTOR-ON instance-of state
state-space : master-switch.status = on;
motor.status = on;
motor.speed = inadequate;
air.temp < controller.tr - 2;
ignition.status = off;
oil-valve.status = closed

WATER-HEATING instance-of state
state-space : master-switch.status = on;
air.temp < controller.tr + 2;
motor.status = on;
motor.speed = adequate;

252

water.temp < controller.tw;
fuel-sensor.status = safe;
combustion~sensor.status = gafe;
water-valve.status = closed;
oil-valve.status = open

RUNNING instance-of state

state-space : master-switch.status = on;
air.temp < controller.tr + 2;
motor.status = on;
motor.speed = adequate;
water.temp >= controller.tw;
fuel-sensor.status = safe;
combustion-sensor.status = safe;
water—-valve.status = open;
oil-valve.status = open

SHUTDOWN instance-of state

state-space : master-switch.status = on;
air.temp >= controller.tr + 2;
motor.status = on;
fuel-sensor.status = safe;
combustion-sensor.status = safe;
water-valve.status = open;
oil-valve.status = closed;
five~-sec-timer.status = on

ABRORMAL-SHUTDOWN instance-of state
state-space : motor.status = off;
motor.speed = inadequate;
% water-valve.status = open; % execution showed we didn’t need
oil-valve.status = closed;
five-sec-timer.status = on

WAITSMINUTES instance-of state

state-space : master-switch.status = on;
motor.status = off;
fuel-sensor.status = safe;
combustion-sensor.status = safe;
water-valve.status = closed;
oil-valve.status = closed;
ignition.status = off;
five-sec-timer.status = off;
five-min-timer.status = on

HOLD instance-of state
state-space : five-sec—-timer.status
five-min-timer.status
motor.status = off;
water-valve.status = closed;
oil-valve.status = closed;

off;
off;

253

ignition.status = off

%U%%Y% EVENTS L%U%%%
%% Internal Events

MASTER-SWITCH-ON instance-of event
type: internal

MOTOR-TURNED-ON instance-of event
type: intermal

OIL-IGNITED instance-of event
type: internal

WATER-VALVE-OPENED instance-of event
type: intermal

DONE-HEATING-WATER instance-of event
type: internal

MOTOR-TURNED-OFF instance-of event
type: internal

DONE-WAITIKG instance-of event
type: intermal

MASTER-SWITCR-OFF instance-of event
type: internal

ABNORMAL~FUEL instance-of event
type: intermal

ABNORMAL-COMBUSTION instance-of event
type: intermnal

SYSTEM-IS-RESET instance-of event
type: internal

SYSTEM-IS-0OFF instance-of event
type: intermal
%% External Events

SWITCH-TURNED-ON instance-of event
type: external

AIR-TEMP-BELOW-PRESET instance-of event
type: external

254

ADEQUATE-MOTOR-SPEED instance-of event
type: extermal

WATER-TEMP-ABOVE-PRESET instance-of event
type: external

AIR-TEMP-ABOVE-PRESET instance-of event
type: external

FIVE-SEC-TIMER-EXPIRES instance-of event
type: external

FIVE-MIN-TIMER-EXPIRES instance-of event
type: external

SWITCH-TURNED-OFF instance-of event
type: external

UNSAFE-COMBUSTION-SENSOR instance-of event
type: external

UNSAFE-FUEL-SENSOR instance-of event
type: external

RESET-SYSTEM instance-of event
type: external

SYSTEM-TURNED-OFF instance-of event
type: external
Y%%%%% BEHAVIORS - STATE ACTIVITES %%%%%
FURNACE-OFF instance-of behavior
master-switch.status, = on
-=>
event, MASTER-SWITCH-ON
AN AN

FURKACE-~IDLE instance-of behavior

air.temp, < controller.tr - 2, dont-care;
master-switch.status, = om, = off

-

motor.status, on, off

event, MOTOR-TURNED-ON, MASTER-SWITCH-OFF

WA

255

FURNACE-MOTOR-ON instance-of behavior

motor.speed, dont-care,
master—-switch.status, = off,
-—>

ignition.status, off,
oil-valve.status, closed,
motor.status, off,

= adequate;
on

on;

open;

on
OIL-IGNITED

o Sl

event,

DALY

MASTER-SWITCH-~OFF,

FURNACE-WATER-HEATING instance-of behavior

dont-care,
= oft,

dont-care,
dont-care,

dont-care,
dont-care,
= unsafe,
dont-care,

dont-care;
dont-care;
dont-care;
= unsafe

closed;
closed;
on;
off;

Water.temp, > controller.tw,
master-switch.status, = on,
fuel-sensor.status, = safe,
combustion-sensor.status, = safe,

-—>

water-valve.status, open,
oil-valve.status, open,
five-sec-timer.status, off,
motor.status, on,

motor.speed, adequate,

event, WATER-VALVE-OPENED,
YA AAA

FURNACE-RUNNING instance-of behavior

air.temp,

fuel-sensor.status, = safe,
combustion-sensor.status, = safe,
master-switch.status, = on,
-=>

oil-valve.status, closed,
five-sec-timer.status, on,
motor.status, on,
motor.speed, adequate,

event, DONE-HEATING-WATER,

W%

closed, closed,
closed, closed,

on, on,

off, off,
inadequate, inadequate,

MASTER-SWITCH-OFF, ABNORMAL-FUEL,

inadequate

ABNORMAL-COMBUSTION

>= controller.tr + 2,

dont-care, dont-care,
= unsafe, dont-care,
dont-care, = unsafe,

= on, = on,
closed, closed,

on, on,

off, off,
inadequate, inadequate,

ABNORMAL-FUEL, ABNORMAL-COMBUSTION,

dont-care;
dont-care;
dont-care;
= off

closed;
on;

off;
inadequate

MASTER-SWITCH-OFF

FURNACE-SHUTTING-DOWN instance-of behavior

five-gec-timer.status,
fuel-sensor.status,

off;
safe;

256

combustion-sensor.status, = safe

-

motor.status, off;

motor.speed, inadequate;
water-valve.status, closed;
five-min-timer.status, on;
ignition.status, off;

water.temp, controller.tw - 2
event, MOTOR-TURNED-OFF

WAL

ABRORMAL-FURNACE-SHUTTING-DOWN instance-of behavior

five-sec—-timer.status, = off

-—>

motor.status, off;

motor.speed, inadequate;
water-valve.status, closed;
five-min-timer.status, off;
ignition.status, off;

water.temp, controller.tw - 2
event, MOTOR-TURNED-OFF

YA

FURNACE-WAITING instance-of behavior

five-min-timer.status, = oft
-—>
event, DONE-WAITING

YA

FURNACE-ABNORMAL instance-of behavior

fuel-sensor.status, = safe, = safe;
combustion-sensor.status, = safe, = safe;
master-switch.status, = off, = on

-

event, SYSTEM-~IS~-OFF, SYSTEM-IS-RESET

WANAAAAYAY BEHAVIORS - EVENT ACTIONS %U%%A%%%%

SWITCH-TURNED-ON-BEH instance-of behavior
true
-->
master-switch.status := on
event none

257

AIR-TEMP-BELOW-PRESET-BEH instance-of behavior
true
-—>
air.temp := controller.tr - 3
event none

ADEQUATE-MOTOR-SPEED-BEH instance-of behavior
true
-—>
motor.speed := adequate
event none

WATER-TEMP-ABOVE-PRESET-BEH instance-of behavior
true
-—>
water.temp := controller.tw + 1
event none

AIR-TEMP-ABOVE-PRESET-BEH instance-of behavior
true
-—>
air.temp := controller.tr + 3
event none

FIVE-SEC-TIMER-EXPIRES-BEH instance-of behavior
true
-—>
five-sec-timer.status := off
event none

FIVE-MIN-TIMER-EXPIRES-BEH instance-of behavior
true
-—>
five-min-timer.status := off
event none

SWITCH-TURNED-OFF-BEH instance-of behavior
true
-—>
master-switch.status := off
event none

UNSAFE-COMBUSTION-SENSOR-BEH instance-of behavior
true
-=>
combustion-sensor.status := unsafe
event none

UNSAFE-FUEL-SENSOR-BEH instance-of behavior
true

258

-—>
fuel-sensor.status := unsafe
event none

RESET-SYSTEM-BEH instance-of behavior
true
-—D>
fuel-sensor.status := safe &
combustion-sensor.status := safe &
master-switch.status := on
event none

SYSTEM-TURNED-OFF-BEH instance-of behavior
true
-=>
fuel-sensor.status := safe &
combustion-sensor.status := safe &
master-switch.status := off
event none

%%%% Relation Table
TABLE1 instance—of relation-table
%% FROM-0OBJECT ASSOCIATION TO-OBJECT

%% STATE- INTERNAL-EVERT RELATIONSHIPS

OFF, MASTER-SWITCH-ON,
IDLE, MOTOR-TURNED-ON,
MOTOR-ON, OIL-IGNITED,
WATER-HEATING, WATER-VALVE-OPENED,
RURNING, DONE-HEATING-WATER,
SHUTDOWN, MOTOR~TURNED-OFF,

ABNORMAL-SHUTDOWN, MOTOR-TURNED-OFF,

WAITEMINUTES, DONE-WAITING,
IDLE, MASTER-SWITCH-OFF,
MOTOR-ON, MASTER-SWITCH-OFF,

WATER-HEATING,
WATER-HEATING,
WATER-REATING,

MASTER-SWITCH-OFF,
ABNORMAL-FUEL,
ABNORMAL-COMBUSTION,

RUNNING, MASTER-SWITCH-OFF,
RURNING, ABNORMAL-FUEL,
RUNNING, ABNORMAL-COMBUSTION,
HOLD, SYSTEM-IS-RESET,
HOLD, SYSTEM-IS~OFF,

%% STATE- EXTERNAL-EVENT RELATIONSEIPS

OUTSIDE, SWITCH-TURNED-ON,

259

OFF;

IDLE;

MOTOR-ON;
WATER-HEATING;
RUNNING;

SHUTDOWN ;
WAITSMINUTES;
HOLD;

IDLE;

OFF;

OFF;
ABNORMAL-SHUTDOWN ;
ABNORMAL-SHUTDOWNK;
ABNORMAL-SHUTDOWN ;
ABNORMAL-SHUTDOWN ;
ABNORMAL-SHUTDOWN ;
ABNORMAL-SHUTDOWK ;
IDLE;

OFF;

OUTSIDE,
OUTSIDE,
OUTSIDE,
OUTSIDE,
OUTSIDE,
OUTSIDE,
OUTSIDE,
OUTSIDE,
OUTSIDE,
OUTSIDE,
OUTSIDE,
OUTSIDE,
OUTSIDE,
OUTSIDE,
OUTSIDE,
OUTSIDE,
OUTSIDE,

AIR-TEMP-BELOW-PRESET,
ADEQUATE-MOTOR-SPEED,
WATER-TEMP-ABOVE-PRESET,
AIR-TEMP-ABOVE-PRESET,
FIVE-SEC-TIMER-EXPIRES,
FIVE-SEC-TIMER-EXPIRES,
FIVE-MIN-TIMER-EXPIRES,
SWITCH-TURNED-OFF,
SWITCH-TURNED-OFF,
SWITCH-TURNED-OFF,
SWITCH-TURNED-OFF,
UNSAFE~COMBUSTION-SENSOR,
UNSAFE-COMBUSTION-SENSOR,
UNSAFE-FUEL-SENSOR,
UNSAFE-FUEL-SENSOR,
RESET-SYSTENM,
SYSTEM-TURNED-OFF,

%%Event-Behavior-relationships

IDLE;
MOTOR-ON;
WATER-HEATING;
RUNNING;
SHUTDOWN ;
ABNORMAL-SHUTDOWN;
WAITSMINUTES;
IDLE;
MOTOR-ON;
WATER-HEATING;
RUNNING;
WATER~-HEATIKG;
RUNNING;
WATER-HEATING;
RUNNING;

HOLD;

HOLD;

SWITCH-TURNED-ON, ICO, SWITCH-TURNED-ON-BEH;
AIR-TEMP-BELOW-PRESET, IC0, AIR-TEMP-BELOW-PRESET-BEH;
ADECATE~MOTOR-SPEED, ICO, ADEQUATE-MOTOR-SPEED-BEH;
WATER-TEMP-ABOVE-PRESET, ICO, WATER-TEMP-ABOVE-PRESET-BEH;
AIR-TEMP-ABOVE-PRESET, ICO, AIR-TEMP-ABOVE-PRESET-BEH;
FIVE-SEC-TIMER-EXPIRES, ICO, FIVE-SEC-TIMER-EXPIRES-BEH;
FIVE-MIN-TIMER-EXPIRES, ICO, FIVE-MIN-TIMER-EXPIRES-BEH;
SWITCH-TURNED-OFF, ICO, SWITCH-TURNED-OFF-BEH;
UNSAFE~COMBUSTION-SENSOR, ICO, UNSAFE-COMBUSTION-SENSOR-BEH;
UNSAFE-FUEL-SENSOR, ICO, UNSAFE-FUEL-SENSOR-BEH;
RESET-SYSTEN, ICO0, RESET-SYSTEM-BEH;
SYSTEM-TURNED-OFF, ICO0, SYSTEM-TURKED-OFF-BEH;

%% ENTITY-RELATIONSHIPS

CONTROLLER, ACTIVATES, MOTOR;
CONTROLLER, MONITORS, MOTOR;
CONTROLLER, MONITORS, THERMOSTAT;
CONTROLLER, POSITIONS, VALVE;
CONTROLLER, MONITORS, MASTER-SWITCH;
CONTROLLER, MONITORS, SENSOR;
CORTROLLER, SETS, TIMER;

%% STATE-BEHAVIOR RELATIONSHIPS

OFF, ICO, FURNACE-OFF ;
IDLE, Ico, FURNACE-IDLE;
MOTOR-ON, Ico, FURNACE-MOTOR-ON;
WATER-HEATING, Ico, FURNACE-WATER-HEATING;
RUNNING, ICo, FURNACE-RUNNING;
SHUTDOWNW, ICO, FURNACE-SHUTTING-DOWN;

ABNORMAL-SHUTDOWN, ICO, ABNORMAL-FURNACE-SHUTTING-DOWN;
WAITEMINUTES, Ico, FURNACE-WAITIKG;
HOLD, ICOo, FURNACE-ABNORMA!.

261

D.6 Heater Problem REFINE Ezecutlable Specification

t1 in-package (’RU)
! in-grammar (’user)

var OML-0Obj : object-class subtype-of user-object

var HOME-HEATER : object-class subtype-of OML-0bj

type return-values = tuple(validity: symbol,
events: seq(symbol),
behaviors : seq{symbol),
st-behaviors : seq(symbol))

%%% Define object classes

var THERMOSTAT : object-class subtype-of HOME~HEATER
var THERMOSTAT-TEMP: map(THERMOSTAT, integer) = {||}

var TIMER : object-class subtype-of HOME-HEATER
var TIMER-STATUS: map(TIMER, symbol) = {||}

var VALVE : object-class subtype-of HOME-HEATER
var VALVE-STATUS: map(VALVE, symbol) = {I1}

var SENSOR : object-class subtype-of HOME-HEATER
var SENSOR-STATUS: map(SENSOR, symbol) = {I |}

%%% Define instances of object classes
var CONTROLLER-ENTITY : object-class subtype-of HOME-HEATER

var CONTROLLER-ENTITY-TR: map(CONTROLLER-ENTITY, integer) = {|1}
var CONTROLLER-ENTITY-TW: map(CONTROLLER~ENTITY. integer) = {||}

var CONTROLLER : CONTROLLER-ENTITY =
set-attrs(make-object (’CONTROLLER-ENTITY),
’name, ’#*CONTROLLER,
'CONTROLLER-ENTITY-TR, 70,
’CONTROLLER-ENTITY-TW, 180)

var IGNITION-ENTITY : object-class subtype~of HOME-HEATER
var IGNITION-ENTITY-STATUS: map(IGNITION-ENTITY, symbol) = {]|I|}

var IGNITION : IGNITION-ENTITY =
set-attrs(make-object (’ IGNITION-ENTITY),
'name, ’*IGNITION,
*IGNITION-ENTITY-STATUS, ’OFF)

var MOTOR-ENTITY : object-class subtype-of HOME-HEATER
var MOTOR-ENTITY-STATUS: wmap(MOTOR-ENTITY, symbol) = {]|}
var MOTOR-ENTITY-SPEED: map(MOTOR-ENTITY, symbol) = {||}

var MOTOR : MOTOR-ENTITY =
set-attrs(make-object (’MOTOR-ENTITY),
’name, ’'#*MOTOR,
MOTOR-ENTITY-STATUS, °’OFF,

262

*MOTOR-ENTITY-SPEED, ’INADEQUATE)

var MASTER-SWITCH-ENTITY : object-class subtype-of HOME-HEATER
var MASTER-SWITCH-ENTITY-STATUS: map(MASTER-SWITCH-ENTITY, symbol) = {|I|}

var MASTER-SWITCH : MASTER-SWITCH-ENTITY =
set-attrs(make-object (’MASTER-SWITCH-ENTITY),
‘name, ’*MASTER-SWITCH,
MASTER-SWITCH-ENTITY-STATUS, ’OFF)

var WATER : THERMOSTAT =
set-attrs(make-object (’THERMOSTAT),
‘name, ’*WATER,
*THERMOSTAT-TEMP, 60)

var AIR : THERMOSTAT =
set-attrs(make-object (’THERMOSTAT),
’name, ’#*AIR,
*THERMOSTAT-TEMP, 60)

var FIVE-SEC-TIMER : TIMER =
set-attrs(make-object (’TIMER),
’name, ’*FIVE-SEC-TIMER,

>TIMER-STATUS, ’OFF)

var FIVE-MIN-TIMER : TIMER =
set-attrs(make-object (’TIMER),
‘name, ’#FIVE-MIN-TIMER,

YTIMER-STATUS, ’0FF)

var OIL-VALVE : VALVE =
set-attrs(make-object (’VALVE),
‘name, ’*0IL-VALVE,
>VALVE-STATUS, ’CLOSED)

var WATER-VALVE : VALVE =
set-attrs(make-object(’VALVE),
’name, ’*WATER-VALVE,
'VALVE-STATUS, ’CLOSED)

var COMBUSTION-SENSOR : SENSOR =
set-attrs(make-object (’SENSOR),
'name, °’*COMBUSTION-SENSOR,
?SENSOR-STATUS, ’SAFE)

var FUEL-SENSOR : SENSOR =
set-attrs(make-object (’SENSOR),
’name, ’*FUEL-SENSOR,
*SENSOR-STATUS, ’SAFE)
%%% Define Store Objects

%%4% Define objects for each flow object

%%% Define functions for behavior objects

function SYSTEM-TURNED-OFF-BEH() =
let(return-symbol : symbol = undefined)

((if true
then
(SENSOR-STATUS (FUEL-SENSOR) <- ’SAFE);
(SENSOR-STATUS (COMBUSTION-SENSOR) <- ’SAFE);
(MASTER-SWITCH-ENTITY~STATUS (MASTER-SWITCH) <- ’QFF)
)
return-symbol

function RESET-SYSTEM-BEH() =
let(return-symbol : symbol = undefined)

((if true
then
(SENSOR-STATUS (FUEL-SENSOR) <- ’SAFE);
(SENSOR-STATUS (COMBUSTION-SENSOR) <- ’SAFE);
(MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) <~ ’0ON)
)
return-symbol

function UNSAFE-FUEL~-SENSOR-BEH() =
let(return-symbol : symbol = undefined)

((if true
then
(SENSOR-STATUS (FUEL-SENSOR) <- ’UNSAFE)
));
return-symbol

function UNSAFE-COMBUSTION-SENSOR-BEH() =
let(return-symbol : symbol = undefined)

((if true
then
(SENSOR-STATUS (COMBUSTION-SENSOR) <- ’UNSAFE)
));
return-symbol

function SWITCH-TURNED-OFF-BEH() =
let(return-symbol : symbol = undefined)

((if true
then
(MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) <- ’OFF)
)
return-syabol

function FIVE-MIN-TIMER-EXPIRES-BEH() =
let(return-symbol : symbol = undefined)

((if true
then
(TIMER-STATUS (FIVE-MIN-TIMER) <- ’OFF)
));

264

return-symbol

function FIVE-SEC-TIMER-EXPIRES-BEH() =
let(return-symbol : symbol = undefined)

((if true
then
(TIMER-STATUS (FIVE-SEC-TIMER) <~ ’DFF)
»;

return-symbol

function AIR-TEMP-ABOVE-PRESET-BEH() =
let(return-symbol : symbol = undefined)

((if true
then
(THERMOSTAT-TEMP (AIR) <- (CONTROLLER-ENTITY-TR(CONTROLLER) + 3))
) H
return-symbol

function WATER-TEMP-ABOVE-PRESET-BEH() =
let(return-symbol : symbol = undefined)

((if true
then
(THERMOSTAT-TEMP (WATER) <- (CONTROLLER-ERTITY-TW(CONTROLLER) + 1))
));

return-symbol

function ADEQUATE-MOTOR-SPEED-BEH() =
let(return-symbol : symbol = undefined)

((if true
then
(MOTOR-ENTITY-SPEED(MOTOR) <~ ’ADEQUATE)
M,

return-symbol

function AIR-TEMP-BELOW-PRESET-BEH() =
let(return-symbol : symbol = undefined)

((if true
then
(THERMOSTAT-TEMP (AIR) <- (CONTROLLER-ENTITY-TR(CONTROLLER) - 3))
));

return-symbol

function SWITCH-TURNED~ON-BEH() =
let(return-symbol : symbol = undefined)

((if true
then
(MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) <- ’ON)
));
return-symbol

265

function FURNACE-ABRORMAL() : aymbol =
let(return-symbol : symbol = undefined)

(SENSOR-STATUS (FUEL-SENSOR) = ’SAFE)

& (SENSOR-STATUS (COMBUSTION-SENSOR) = ’SAFE)

& (MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) = ’QFF)
-—>

(return-symbol <- ’OFF);

(SENSOR~STATUS (FUEL-SENSOR) = ’SAFE)

& (SENSOR~-STATUS (COMBUSTION-SENSOR) = ’SAFE)

& (MASTER-SWITCH-ENTITY-STATUS(MASTER-SWITCH) = ’ON)
-—>

(return-symbol <- ’IDLE)

);
return-symbol

RARRAAARARARLA

function FURNACE-WAITING() : symbol =
let(return-symbol : symbol = undefined)

(
(TIMER-STATUS(FIVE-MIN-TIMER) = ’OFF)
-—>
(return-symbol <- ’IDLE)

);
return-symbol

RRAAARARANAL

function ABNORMAL-FURNACE-SHUTTING-DOWK() : symbol =
let(return-symbol : symbol = undefined)

(TIMER-STATUS(FIVE-SEC-TIMER) = ’OFF)

-=>

(MOTOR-ENTITY-STATUS(MOTOR) <- ’OFF)

& (MOTOR-ENTITY-SPEED(MOTOR) <- ’INADEQUATE)
(VALVE-STATUS(WATER-VALVE) <- ’CLOSED)
(TIMER-STATUS(FIVE-MIN-TIMER) <- ’OFF)
(IGNITION-ERTITY-STATUS(IGNITION) <- ‘OFF)

(THERMOSTAT-TEMP (WATER) <- (CONTROLLER-ENTITY-TW(CONTROLLER) - 2))
(return-symbol <- ’HOLD)

LA 2N 2N 2% 4

)3
return-symbol

ARRARANAANLN

function FURNACE-SHUTTING-DOWN() : symbol =
let(return-symbol : symbol = undefined)

(
(TIMER-STATUS(FIVE-SEC-TIMER) = ’OFF)
& (SENSOR-STATUS(FUEL-SENSOR) = ’SAFE)

& (SENSOR-STATUS (COMBUSTION-SENSOR) = ’SAFE)

-=>

(MOTOR-ENTITY-STATUS(MOTOR) <- >OFF)

& (MOTOR-ENTITY-SPEED(MOTOR) <- *INADEQUATE)

(VALVE-STATUS (WATER-VALVE) <~ ’CLOSED)
(TIMER-STATUS(FIVE-MIN-TIMER) <- ’ON)

(IGNITION-ENTITY-STATUS (IGNITION) <- ’OFF)
(THERMOSTAT-TEMP(WATER) <- (CONTROLLER-ENTITY-TW(CONTROLLER) - 2))
(return-symbol <- ’WAITSMINUTES)

L B O A 4

);
return-symbol

RARARLANALRL

function FURNACE-RUNNING() : symbol =
let (return-symbol : symbol = undefined)

(THERMOSTAT-TEMP (AIR) >= (CONTROLLER-ENTITY-TR(CONTROLLER) + 2))
& (SENSOR-STATUS(FUEL-SENSOR) = ’SAFE)

& (SENSOR-STATUS (COMBUSTION-SENSOR) = ’SAFE)

& (MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) = ’ON)

-

(VALVE-STATUS(OIL-VALVE) <- °’CLOSED)

& (TIMER-STATUS(FIVE-SEC-TIMER) <- ’ON)

& (MOTOR-ENTITY-STATUS(MOTOR) <- ’ON)

& (MOTOR-ENTITY-SPEED(MOTOR) <- ’ADEQUATE)

& (return-symbol <- ’SHUTDOWN);

(SENSOR-STATUS (FUEL-SENSOR) = ’UNSAFE)
& (MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) = ’ON)
-->

(VALVE-STATUS(OIL-VALVE) <- °’CLOSED)

& (TIMER-STATUS(FIVE-SEC-TIMER) <- ’ON)

& (MOTOR-ENTITY-STATUS(MOTOR) <- ’OFF)

& (MOTOR-ENTITY-SPEED(MOTOR) <~ ’INADEQUATE)
& (return-symbol <~ ’ABNORMAL-SHUTDOWK) ;

(SENSOR-STATUS (COMBUSTION-SENSOR) = ’UNSAFE)

& (MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) = ’ON)
-—>

(VALVE-STATUS(OIL-VALVE) <~ ’CLOSED)

& (TIMER-STATUS(FIVE-SEC-TIMER) <- ’0ON)

& (MOTOR-ENTITY-STATUS(MOTOR) <- °’OFF)

& (MOTOR-ENTITY-SPEED(MOTOR) <- ’INADEQUATE)

& (return-symbol <- ’ABNORMAL-SHUTDOWN) ;

(MASTER-SWITCH-ENTITY-STATUS(MASTER-SWITCH) = °OFF)
-—->

(VALVE-STATUS(DIL-VALVE) <- ’CLOSED)

& (TIMER-STATUS(FIVE-SEC-TIMER) <- ’ON)

& (MOTOR-ENTITY-STATUS(MOTOR) <- ’OFF)

& (MOTOR-ENTITY-SPEED(MOTOR) <- ’INADEQUATE)

& (return-symbol <- ’ABNORMAL-SHUTDOWN)

);

267

return-symbol

ARARARRALALNR

function FURNACE-WATER-HEATING() : symbol =
let (return-symbol : symbol = undefined)

(THERMOSTAT-TEMP (WATER) > CONTROLLER-ENTITY-TW(CONTROLLER))
& (MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) = ’ON)
& (SENSOR-STATUS(FUEL-SENSOR) = ’SAFE)

& (SENSOR-STATUS (COMBUSTION-SENSOR) = ’SAFE)

-->

(VALVE-STATUS(WATER-VALVE) <- ’OPEN)

& (VALVE-STATUS(OIL-VALVE) <- *OPEN)

& (TIMER-STATUS(FIVE-SEC-TIMER) <- *OFF)

& (MOTOR-ENTITY-STATUS(MOTOR) <- ’ON)

& (MOTOR-ENTITY-SPEED(MOTOR) <- ’ADEQUATE)

& (return-symbol <- ’RUNNING);

(MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) = ’OFF)
-3

(VALVE-STATUS(WATER-VALVE) <- ’CLOSED)

& (VALVE-STATUS(OIL-VALVE) <- ’CLOSED)

& (TIMER-STATUS(FIVE-SEC-TIMER) <- ’ON)

& (MOTOR-ENTITY-STATUS(MOTOR) <- ’OFF)

& (MOTOR-ENTITY-SPEED(MOTOR) <- >INADEQUATE)

& (return-symbol <- ’ABNORMAL-SHUTDOWN) ;

(SENSOR~STATUS (FUEL-SENSOR) = ’UNSAFE)

-=>

(VALVE-STATUS(WATER-VALVE) <- ’CLOSED)

& (VALVE-STATUS(OIL-VALVE) <- ’CLOSED)

& (TIMER-STATUS(FIVE-SEC-TIMER) <- ’ON)

& (MOTOR-ENTITY-STATUS(MOTOR) <- ’OFF)

& (MOTOR-ENTITY-SPEED(MOTOR) <- ’INADEQUATE)
& (return-symbol <- ’ABNORMAL-SHUTDOWN);

(SENSOR-STATUS (COMBUSTION-SENSOR) = ’UNSAFE)
-—=>

(VALVE-STATUS(WATER-VALVE) <- ’CLOSED)

& (VALVE-STATUS(OIL-VALVE) <- ’CLOSED)

& (TIMER-STATUS(FIVE-SEC-TIMER) <- °’ON)

& (MOTOR-ENTITY-STATUS(MOTOR) <- °’OFF)

& (MOTOR-ENTITY-SPEED(MOTOR) <- ’INADEQUATE)
& (return-symbol <- ’ABNORMAL-SHUTDOWN)

);
return-symbol

RRAARARAALRY

function FURNACE-MOTOR-ON() : symbol =
let(return-symbol : symbol = undefined)

(

(MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) = ’OFF)
-->

268

(IGNITION-ENTITY-STATUS(IGNITION) <- °OFF)
& (VALVE-STATUS(OIL-VALVE) <- ’CLOSED)

& (MOTOR-ENTITY-STATUS (MOTOR) <- ’0FF)

& (return-symbol <- ’0FF);

(MOTOR-ENTITY-SPEED(MOTOR) = ’ADEQUATE)

& (MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) = °ON)
-—>

(IGNITIOR-ENTITY-STATUS(IGNITION) <- °ON)

& (VALVE-STATUS(OIL-VALVE) <- ’OPEN)

& (MOTOR-ENTITY-STATUS(MOTOR) <- ’0N)

& (return-symbol <- *WATER-HEATING)

);
return-symbol

RALARALAALAS

function FURNACE-IDLE() : symbol =
let(return-symbol : symbol = undefined)

(THERMOSTAT-TEMP (AIR) < (CONTROLLER-ENTITY-TR(CONTROLLER) - 2))
& (MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) = ’ON)

-—>

(MOTOR-ENTITY-STATUS(MOTOR) <- °’ON)

& (return-symbol <- ’MOTOR-ON);

(MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) = ’OFF)
-—>

(MOTOR-ENTITY-STATUS(MOTOR) <- °’OFF)

& (return-symbol <~ ’0FF)

);
return-symbol

RRRRAARRANLY

function FURNACE-OFF() : symbol =
let(return-symbol : symbol = undefined)

(
(MASTER-SWITCH-ENTITY-STATUS(MASTER-SWITCH) = ’ON)
-=>
(return-symbol <- ’IDLE)

)3
return-symbol

RRRRALARLLAAL
%%% Define function for each state object

function HOLD() : return-values =
let (valid-ext-event : seq(symbol) =
[?SYSTEM-TURNED-OFF, ’RESET-SYSTEM],
valid-event-beh : seq(symbol) =
[’ SYSTEM-TURKED-OFF-BEH, ’RESET-SYSTEM-BEH],
state-beh : seq(symbol) = [’FURNACE-ABNORMAL],

269

return-tuple : return-values = undefined)

format (true, "The current state of the aystem is HOLD");
(if
(TIMER-STATUS (FIVE~SEC-TIMER) = ’QOFF) and
(TIMER-STATUS (FIVE-MIN-TIMER) = ’0OFF) and
(MOTOR-ENTITY-STATUS(MOTOR) = °OFF) and
(VALVE~STATUS (WATER-VALVE) = ’CLOSED) and
(VALVE-STATUS(OIL-VALVE) = ’CLOSED) and
(IGNITION-ENTITY-STATUS(IGNITION) = ’OFF)
then
format(true, "% VALID STATE SPACE~%");
return~tuple <- <’valid, valid-ext-event, valid-event-beh, state-beh>
else
format(true, "~% INVALID STATE SPACE~%“);
return-tuple <- <’invalid, (], [’HOLD], state-beh>);
return-tuple

function WAITSMINUTES() : return~values =
let (valid-ext-event : seq(symbol) =
[’FIVE-MIN-TIMER-EXPIRES],
valid-event-beh : seq(symbol) =
(’FIVE~MIN-TIMER-EXPIRES-BEH],
state-beh : seq(symbol) = [’FURNACE-WAITING],
return-tuple : return-values = undefined)

format(true, "The current state of the system is WAITSMINUTES");
(if

(MASTER~SWITCH-ERTITY-STATUS (MASTER-SWITCH) = ’ON) and

(MOTOR-ENTITY-STATUS(MOTOR) = ’OFF) and

(SERSOR-STATUS (FUEL-SENSOR) = ’SAFE) and

(SENSOR-STATUS (COMBUSTION-SENSOR) = ’SAFE) and

(VALVE-STATUS (WATER-VALVE) = °CLOSED) and

(VALVE-STATUS(OIL-VALVE) = ’CLOSED) and

(IGNITION-ENTITY-STATUS(IGNITION) = ’OFF) and

(TIMER-STATUS (FIVE-SEC-TIMER) = ’0OFF) and

(TIMER-STATUS (FIVE-MIN-TIMER) = ’ON)
then

format (true, ""% VALID STATE SPACE~%");

return-tuple <- <’valid, valid-ext-event, valid-event-beh, state-beh>
else

format(true, "“% INVALID STATE SPACE~%");

return-tuple <~ <’invalid, [J, [’WAITSMINUTES], state-beh>);
return-tuple

function ABNORMAL-SHUTDOWN() : return-values =
let (valid-ext-event : seq(symbol) =
[’FIVE-SEC-TIMER-EXPIRES],
valid-event-beh : seq(symbol) =
[’FIVE~SEC-TIMER-EXPIRES-BEH],
state-beh : seq(symbol) = [’ABNORMAL-FURNACE-SHUTTING-DOWN],
return-tuple : return-values = undefined)

format (true, "The current state of the system is ABFIRMAL-SHUTDOWN");
(it
(MOTOR-ENTITY-STATUS(MOTOR) = ’*0FF) and

270

(MOTOR-ENTITY-SPEED(MOTOR) = ’>INADEQUATE) and

(VALVE-STATUS (OIL-VALVE) = °CLOSED) and

(TIMER-STATUS (FIVE-SEC-TIMER) = ’ON)
then

format (true, "% VALID STATE SPACE"%");

return-tuple <- <’valid, valid-ext-event, valid-event-ben, state-beh>
else

format (true, "~% INVALID STATE SPACE™%");

return-tuple <- <’invalid, [], [’ABNORMAL-SHUTDOWN], state-beh>);
return-tuple

function SHUTDOWN() : return-values =
let (valid-ext-event : seq(symbol) =
[’ FIVE-SEC-TIMER-EXPIRES],
valid-event-beh : seq(symbol) =
[’ FIVE-SEC-TIMER-EXPIRES-BEK],
state-beh : seq(symbol) = [’FURNACE-SHUTTING-DOWN],
return-tuple : return-values = undefined)

format (true, "The current state of the system is SHUTDOWN");
(if
(MASTER-SWITCH-ENTITY-STATUS(MASTER-SWITCH) = ’ON) and
(THERMOSTAT-TEMP (AIR) >= (CONTROLLER-ENTITY-TR(CONTROLLER) + 2)) and
(MOTOR-ENTITY-STATUS(MOTOR) = ’ON) and
(SENSOR-STATUS (FUEL-SENSOR) = ’SAFE) and
(SENSOR-STATUS (COMBUSTION-SENSOR) = ’SAFE) and
(VALVE-STATUS (WATER-VALVE) = ’OPEN) and
(VALVE-STATUS (OIL-VALVE) = ’CLOSED) and
(TIMER-STATUS (FIVE-SEC-TIMER) = ’ON)
then
format(true, "~% VALID STATE SPACE~%");
return-tuple <- <’valid, valid-ext-event, valid-event-beh, state-beh>
else
format (true, "~% INVALID STATE SPACE~%");
return-tuple <~ <’invalid, [], [’SHUTDOWN], state-beh>);
return-tuple

function RUNNING() : return-values =
let (valid-ext-event : seq(symbol) =
[*UNSAFE-FUEL-SENSOR, ’UNSAFE-COMBUSTION-SENSOR,
? SWITCH-TURNED-OFF, ’AIR-TEMP-ABOVE-PRESET],
valid-event-beh : seq(symbol) =
[’UNSAFE-FUEL-SENSOR-BEH, ’UNSAFE~COMBUSTION-SENSOR-BEH,
’SWITCH-TURNED-~OFF-BEH, ’AIR-TEMP-ABOVE-PRESET-BEH],
state-beh : seq(symbol) = [’FURNACE-RUNNING],
return-tuple : return-values = undefined)

format(true, "The current state of the system is RUNNING");

(if
(MASTER-SWITCH-ENTITY~STATUS (MASTER-SWITCH) = °ON) and
(THERMOSTAT-TEMP (AIR) < (CONTROLLER-ENTITY-TR(CONTROLLER) + 2)) and
(MOTOR-ENTITY-STATUS(MOTOR) = *ON) and
(MOTOR-ERTITY-SPEED(MOTOR) = ’ADEQUATE) and
(THERMOSTAT-TEMP (WATER) >= CONTROLLER-ENTITY-TW(CONTROLLER)) and
(SENSOR-STATUS (FUEL-SENSOR) = ’SAFE) and
(SENSOR-STATUS (COMBUSTION-SENSOR) = ’SAFE) and

271

(VALVE-STATUS (WATER-VALVE) = ’0PEN) and

(VALVE-STATUS (OIL-VALVE) = ’0OPEN)
then

format(true, "~% VALID STATE SPACE~%");

return-tuple <- <’valid, valid-ext-event, valid-event-beh, state-beh>
else

format (true, "~% INVALID STATE SPACE~%");

return-tuple <- <’invalid, [], [’RUNNING], state-beh>);
return-tuple

function WATER~-HEATING() : return-values =
let (valid-ext-event : seq(symbol) =
[*UNSAFE-FUEL-SENSOR, ’UNSAFE-COMBUSTION-SENSOR,
*SWITCH-TURNED-OFF, ’WATER-TEMP-ABOVE-PRESET],
valid-event-beh : seq(symbol) =
[’UNSAFE~FUEL-SENSOR~BEH, ’UNSAFE-COMBUSTION-SENSOR-BEH,
*SWITCH-TURNED-OFF-BEH, ’WATER-TEMP-ABOVE-PRESET-BEH],
state-beh : seq(aymbol) = [’FURNACE-WATER-HEATING],
return-tuple : return-values = undefined)

format (true, "The current state of the system is WATER-HEATING");
(if
(MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) = ’ON) and
(THERMOSTAT-TEMP (AIR) < (CONTROLLER-ENTITY-TR(CONTROLLER) + 2)) and
(MOTOR-ENTITY-STATUS(MOTOR) = ’ON) and
(MOTOR-ENTITY-SPEED(MOTOR) = ’ADEQUATE) and
(THERMOSTAT-TEMP (NATER) < CONTROLLER-ENTITY-TW(CONTROLLER)) and
(SENSOR-STATUS (FUEL-SENSOR) = ’SAFE) and
(SENSOR-STATUS (COMBUSTION-SENSOR) = ’SAFE) and
(VALVE-STATUS (WATER-VALVE) = ’CLOSED) and
(VALVE-STATUS (OIL-VALVE) = >OPEN)
then
format(true, "% VALID STATE SPACE~%");
return-tuple <~ <’valid, valid-ext-event, valid-event-beh, state-beh>
else
format(true, "“% INVALID STATE SPACE~%");
return-tuple <- <’invalid, [], [’WATER-HEATING], state-beh>);
return-tuple

function MOTOR-ON() : return-values =
let (valid-ext-event : seq(symbol) =
[’ SWITCH-TURKED-OFF, ’ADEQUATE-MOTOR-SPEED],
valid-event-beh : seq(symbol) =
[’>SWITCH-TURNED-OFF-BEH, ’ADEQUATE-MOTOR-SPEED-BEH],
state-beh : seq(symbol) = [’FURNACE-MOTOR-ON],
return-tuple : return-values = undefined)

format(true, "The current state of the system is MOTOR-ON");

(it
(MASTER-SWITCH-ENTITY-STATUS(MASTER-SWITCH) = ’ON) and
(MOTOR-ENTITY-STATUS(MOTOR) = ’ON) and
(MOTOR-ENTITY-SPEED(MOTOR) = ’INADEQUATE) and
(THERMOSTAT-TEMP (AIR) < (CONTROLLER-ENTITY-TR(CONTROLLER) - 2)) and
(IGNITION-ENTITY-STATUS(IGNITION) = ’OFF) and
(VALVE-STATUS (OIL-VALVE) = ’CLOSED)

then

272

format (true, "~% VALID STATE SPACE"%");

return-tuple <- <’valid, valid-ext-event, valid-event-beh, state-beh>
else

format (true, "~% INVALID STATE SPACE~%");

return-tuple <- <’invalid, [], [’MOTOR-0N], state-beh>);
return-tuple

function IDLE() : return-values =
let (valid-ext-event : seq(symbol) =
[’ SWITCH-TURNED-OFF, ’AIR-TEMP-BELOW-PRESET],
valid-event-beh : seq(symbol) =
[’ SWITCH~TURNED-OFF-BEH, ’AIR-TEMP-BELOW~PRESET-BEH],
state-beh : seq(symbol) = [’FURNACE-IDLE],
return-tuple : return-values = undefined)

format (true, "The current state of the system is IDLE");
(if
(MASTER-SWITCH-ENTITY-STATUS (MASTER-SWITCH) = °ON) and
(TIMER-STATUS (FIVE-MIN-TIMER) = °’OFF) and
(TIMER-STATUS (FIVE-SEC-TIMER) = ’OFF)
then
format(true, "~% VALID STATE SPACE~%");
return-tuple <- <’valid, valid-ext-event, valid-event-beh, state-beh>
else
format (true, "~} INVALID STATE SPACE™%");
return-tuple <- <’invalid, [J], [’IDLE], state-beh>);
return-tuple

function OFF() : return-values =
let (valid-ext-event : seq(symbol) =
[’>SWITCH-TURNED-0ON],
valid-event-beh : seq(symbol) =
[?SWITCH-TURNED-ON-BEH] ,
state-beh : seq(symbol) = [’FURNACE-OFF],
return-tuple : return-values = undefined)

format(true, "The current state of the system is OFF");
(if
(MASTER-SWITCH-ENTITY-STATUS(MASTER-SWITCH) = ’0FF)
then
format (true, "% VALID STATE SPACE~%");
return-tuple <~ <’valid, valid-ext-event, valid-event-beh, state-beh>
else
format(true, "~% INVALID STATE SPACE~%");
return-tuple <- <’invalid, [1, [’0FF], state-beh>);
return-tuple

function sim() =

let (sfunction : return-values = undefined,
st-name : symbol = ’OFF, %% assume first state in OML file is initial
done : boolean = false,
reply : integer = undefined)

while “done do
sfunction <- funcall(st-name);
(if sfunction.validity = ’valid then

reply <- Make-Menu(afunction.events, "Events that can occur:");
(if Reply <= size(sfunction.events) then
funcall(sfunction.behaviors(reply));

enumerate si-beh over afunction.st-behaviors do
st-name <- funcall(st-beh)
elseif Reply = size(sfunction.events)+2 then
done <~ true %% selects quit
)
else %% not valid state
done <- true;
format (true, "The system’s current state space conflicts with
the state space required to be in the above mentioned state. Here are the
current attribute values in the system. Compare them with the required values
specified in your specification to find the inconsistencies.~%");

(enumerate obj over [obj | (obj : HOME-HEATER) HOME-HEATER(obj)] do
(enumerate attr over Return-Attribute-List(obj) do
format(true, " “A.7A : "A~)",name(obj), name(attr), retrieve-attribute(obj, attr))

)D))
%A% Define function for each process object
%%4% Defines function for erasing all objects in Refine’s database.
%%% Execute this function before you reload this file if you do not use
%%% the convert process.
function clear-objecta() =

(enumerate obj over [obj | (obj : HOME-HEATER) HOME-HEATER(obj)] do
erase-object(obj))

274

Appendiz E. Library Problem Analysis

This problem is from the problem set for the Fourth International Workshop on Software
Specification and Design. It is based on R.A. Kemmerer’s “Testing formal specifications to detect
design errors”. The initial ERM and DFMs were composed by Blankenship (6:Appendix F), but

were modified to improve their understandability.

E.1 Problem Statement

“Consider a small library database with the following transactions:

1. Check out a copy of a book / Return a copy of a book;

2. Add a copy of a book to / Remove a copy of a book from th= library;

3. Get the list of books by a particular author or in a particular subject area;
4. Find out the list of books currently checked out by a particular borrower;
5. Find out what borrower last checked out a particular copy of a book.

There are two types of users: staff users and ordinary borrowers. Transactions 1, 2, 4 and 5
are restricted to staff users, except that ordinary borrowers can perform transaction 4 to find out
the list of books currently borrowed by themselves. The database must also satisfy the following
constraints:

1. All copies in the library must be available for checkout or be checked out.

2. No copy of the book may be both available and checked out at the same time.

3. A borrower may not have more than a predefined number of books checked out at one time.

(18)”

275

book--
<> (? O
User
Ordinary Staff

Transaction

Figure 25. Library: Entity Relationship Model (6:F-12)

E.2 Entity-Relationship Models

The entity relationship model shows the primary objects in the system and the relationships
between them. The library system contains books and users. The relationships in the diagram
identify operations that will be required on users and books. A transaction is an entity that is used

to transport information from the user interface to the process needing that information.

E.8 Data Flow Models

Transaction

Users User-Name

User

Book List U SE RS
Library “"—_

System
BOOKS

Error Message

Figure 26. Library: Context Diagram (6:F-8)

The context diagram, Figure 26, shows the system’s interaction between Users and the stores
of books and authorized users. This interaction is expanded in Figure 27. All data flows that have
a missing terminator are assumed to be flowing from or to an external entity. We have adopted
a notion from Rumbaugh that allows a process to search an entire store. These are shown as
unlabelled flows. (23:127) Addition or deletion of an item from a store is shown by a singled-
headed arrow flowing into a store. Double-headed arrows between a process and a store denote
the retrieval, modification, and replacement of an item in a store. We have also required that all
flows have unique names. This facilitates an automated translation without having to generate
parameterized behaviors. Transactions and User-Names allow Process 1 of Figure 27 to determine
authorized users and distinguish staff users from ordinary borrowers. Process 2 determines the
type of staff-authorized transaction requested, queries stores, and produces the appropriate lists as

output. Process 3 performs ordinary borrower transactions,

277

New-T
ew-Trans User-Name-1

1
Determine
User
Type

Error-Message
Transaction-1

3

Handle
User
Transactions

Book-List*

_ BOOKS Book-List*

* Actually display statements
in process behavior objects

Figure 27. Library: Level 0

Figures 28, 29, and 30 expand Processes 1, 2, and 3 from the Level 0 DFD. Process 1
further decomposes into two lower-level processes: one to check the User data store and ensure
that the user is authorized; the other to place controlling information in the transaction record.
The transaction record is assumed to be input by the user and to contain all needed information
to correctly complete the requested transaction. Process 1.1 produces an out-flow to notify a user
who is not authorized access to the information in the system. Process 1.2 places the correct user

level (staff or ordinary) in the transaction to restrict which transactions may be performed.

Process 2 decomposes into a transaction center and a set of processes representing each
operation that is available to a staff user. Process 2.1 inspects TRANSACTION-1.trans-type and
fills the appropriate out-flow, depending on its content. Processes 2.2 through 2.11 operate on
information received in their Transaction flows. ‘They also access and update stores as required by

their function. For example, Process 2.4 (Check-Out Book) and Process 2.5 (Return Book) access

278

User-Name-1
(Flow-Name)

Error-Message

Set User-Type

User-Type-1
(User)

N

1.2

New-Trans
: Determine
(Transaction) Transaction
Transaction-2
Transaction-1 (Transaction)
(Transaction)

Figure 28. Library: Level 1

and update both Books and Users data stores. Each process must verify the status of the book
being operated on, update the book’s status to checked-out or available, and retrieve and update
the number of books the user has checked out. Return Book must also update the last borrower of
a returned book in the Book data store. Processes 2.6 through 2.9 produce out-flows of Book-List.
Book-List is a set of books that would be displayed to the User. These are modeled in the processes’

behaviors using OML’s display function. No Flow objects named Book-List are required.

Process 3 also decomposes into transaction center and processes representing operations.
Users have only one unique operation: listing books that they have borrowed. The other two

operations shown are Level 2 processes, but have been included in Figure 30 for clarity.

279

* Actually display statements
in process behavior objects

Unlabelled data tiows represent

searches by the process into
the store.

Updated-Book-2
(Book)

» .
e/ T4 \,%
2.11) i e % Subked
User A : 28
~
Book L Book-List
210 29 byBo'morm
Updated-N Add Last Borrower
(User) 3 User of a Book
_BOOKS _
USERS
Book-List"”
Updated-Name-4
(User)

Figure 29. Library: Level 2 (6:F-10)

280

Transaction-2

Figure 30. Library: Level 3 (6:F-11)

281

E.4 Library Problem OML Specification

This specification maps directly to OML from the models shown above with the following

irregularities:

o In some cases, data flows to external entities have been modeled by a display rather than a
flow when that flow was providing output information to the user. Book-List is an example

of this type of data flow.

e The User entity class is defined in the ERM as having two subclasses. Because these subclasses
had no unique attributes, they were differentiated using an attribute rather than creating

subtypes and composing an ISA relation.

e Unlabeled arrows from stores to processes represent searches over the store to verify data.
These flows are not modeled as OML flows because no data is ever removed from the store.
They have been implemented by using OML’s “exists” in the preconditions of the behavior’s

OML specification.

282

VA AN AN AN S AN N AN A S YA S A AN YA AN NN S SNy AN S AN SN N A SN YA S AN AN AN NN AN A A

Wi
W%
Wik
Wik
Wk
Wb
Wik
Wik
Wt
Wit
Wk
Wk
WA
Wik
%Wl
Wi
Wik
Wik
Wk
Wk
Whh
Whh
Wt
Wik
Whh
Wl
Wik

File-Name :

Authors :

Purpose :

1.spec (Library Specification)
Capt Mary Boom, Capt Brad Mallare

OML specification for the library problem.

Unified Abstract Model Components :

Entities, Relationships, Processes, Flows, Stores, Behaviors, and

Relation-Tables

Operation :

following

The name of the generated executable specification will be displayed

on the screen. Additionally, the executable specification will be

command at the Refine prompt:

(convert '"<your-OML~file-name>")

automatically compiled and loaded.

After this file is translated, compiled, and loaded into Refine,
it can be executed by typing the following command at the Refine

prompt:

(sim)

After loading the translation code (trans-oml.fasl4) and
all the other code that it is dependent on, this OML specification
can be translated into an executable specification by typing the

%h%
Whh
Wik
Whh
Whk
Wl
Wit
Whh
%k
Whte
Whih
Wik
Wl
Whh
Wit
Wk
Wl
Whh
Whh
Wil
Whh
Hhl
Wk
WA
./l. .. (]
Wht
Wil

VAN AN YA SN YA AN S YA SN Y AN YA AN SN S AN YA YA AN A AN AN YA AN TN YA Y YA YA A AN A

specification library

YARUAIYAA%Y ENTITIES %AAAA%A%%%

USER class-of entity

type : internal
parts
user-name : string;

kind : symbol range {staff, ordinary};
book-count :

integer range {0 .. 10}

LIBRARIAN instance-of user
values
user-name :

book-count :

"librarian";
kind : staff;

0

BOOM instance~of user

values
user-name : "boom";
kind : ordinary;

283

book-count : 1

MALLARE instance-of user
values
user-name : "mallare";
kind : ordinary;
book-count : 1

BOOK class-of entity
type : intermal
parts
book-id : string;
author : string;
title : string;
subject : string;
last-user : string;
current-borrowver : string;
status : symbol range {available, checked-out}

BOOK1 instance-of book
values
book-id : "QA76.1";
author : Ritchie;
title : "The C Programming Language";
subject : "programming";
last-user : "none";
current-borrower : "Boom";
status : checked-out

BOOK2 instance-oi book
values
book-id : "QA76.2";
author : "Silberschatz";
title : "Operating System Concepts";

subject : "operating systems";
last-user : "none";
current-borrower : "Mallare";

status : checked-out

OUTSIDE instance-of entity
type : external

FLOW-KAME class-of entity
type : internal

parts
N : string

TRANSACTION class-of entity
type : internal
parts
user-kind : symbol range {staff, ordinary};

284

borrower-name : string;
borrower-kind : symbol range {staff, ordinary};
% book-name : symbol;

book-id : string;

author : string;

title : string;

subject : string;

trans-type : symbol range {add-book, remove-book, check-out-book,
return-book, list-books-by-author,
list-books-by-subject,
list-books-by-borrower, list-my-books,
list-last-borrower, add-user, remove-user}

MESSAGE class-of entity
type : internal
parts
text : string

ERROR-MESSAGE instance-of MESSAGE
values
text : "Unauthorized User. See Librarian for assistance."

UUAUAUAY%%Y, RELATIONSHIPS YUUAAULLNY

Adds instance-of Relationship
type : general
cardinality : 1-1

Removes instance-of Relationship
type : general
cardinality : 1-1

Checks—-0Out instance-of Relationship
type : general
cardinality : 1-1

Returns instance-of Relationship
type : general
cardinality : 1-1

Gets-Subject-Listing instance-of Relatiomship
type : general
cardinality : 1-1

Gets-Author-Listing instance-of Relatiomnship
type : general
cardinality : 1-1

Lists-Last-Borrower instance-of Relationship

type : general
cardinality : 1-1

285

Lists-All-Borrowed instance-of Relationship
type : general
cardinality : 1-m
List-Own-Borrowed instance-of Relationship
type : general
cardinality : 1-m
Add-Book-Behavior instance-of Relationship
type : ICO
cardinality : 1-1
WARAAAYLAYLY, PROCESSES AAAUAALALY
SET-USER-TYPE instance-of Process
DETERMINE-TRANS-TYPE instance-of Process
DETERMINE-STAFF-TRANS instance-of Process
ADD-BOOK instance-of Process
REMOVE-BOOK instance-of Process
CHECK-QUT-BOOK instance-of Process
RETURN-BOOK instance-of Process
LIST-BOOKS-BY~-AUTHOR instance-of Process
LIST-BOOKS-BY-SUBJECT instance-of Process
LIST-BOOKS-BY-BORROWER instance-of Process
LIST-LAST-BORROWER instance-of Process
ADD-USER instance-of Process
REMOVE-USER instance-of Process
DETERMINE-USER-TRANS instance-of Process

LIST-MY-BOOKS instance-of Process

YUURAAANYLLY, BEHAVIORS %UNAAAALAY,
%%% LEVEL 1 %%Y%

SETTING-USER-TYPE instance-of Behavior

exists (User) (User in Users &

286

-

W1
1.2
wWo2.1
Who2.2
%W o2.3
%% 2.4
%W 2.5
% 2.6

wo2.

-~

* 2.

Yh 2.

-]

%% 2.10
%ho2.11
% 3.1
%% 3.2

User.User-Name = User-Name-1.X &
User.kind = staff)

-—->

User-Type-1.kind := staff

event none;

exists (User) (User in Users &
User.User-Name = User-Name-1.N &
User.kind = ordinary)
-->
User-Type-1.kind := ordinary &
User-Type—1.User-Name := User-Name-1.N
event none;

not exists (User) (User in Users &
User.User-Name = User-Name-1.N)

-—>

Display(Error-Message.Text)

event none

DETERMINE-TRANSACTION instance-of Behavior

User-Type-1.kind = staff

-—>

Transaction-1 := New-Trans &
Transaction-1.user-kind := staff
event none;

User-Type-1.kind = ordinary

-—->

Transaction-2 := New-Trans &

Transaction-2.user-kind := ordinary &
Transaction-2.Borrower-Name := User-Type-1.User-Name

event none
%%% LEVEL 2 %%%
DETERMINING~-STAFF instance-of Behavior

Transaction-1.trans-type = add-book
—-—>

Transaction-3 := Tramsaction-1
event none;

Transaction-1.trans-type = remove-book
-—>

Transaction-4 := Transaction-1

event none;

Transaction-1.trans-type = check-out-book
-=>

287

Transaction-5 := Transaction-1
event none;

Transaction-1.trans-type = return-book
-->

Transaction-6 := Transaction-1

event none;

Transaction—-1.trans-type = list-books-by-author
-—>

Transaction-10 := Transaction-1

event none;

Transaction-1.trans-type = list-books-by-subject
-—=>

Transaction-8 := Transaction-1

event none;

Transaction-1.trans-type = list-books-by-borrower
-=>

Transaction-12 := Transaction-1

event none;

Transaction-1.trans-type = list-last-borrower
-—>

Transaction-7 := Tramsaction-1

event none;

Transaction-1.trans-type = add-user
-

Transaction-9 := Tramsaction-1
event none;

Transaction-1.trans-type = remove-user
-=>

Transaction-11 := Transaction-1

event none

ADDING-BOOK instance-of Behavior

not exists (book) (book in Books &
book.Book~Id = Transaction-3.Book-Id)

-2

% Updated-Book-1.Name := Transaction-3.book-name &
Updated-Book-1.book-id := Transaction-3.book-id &
Updated-Book-1.author := Transaction-3.author &
Updated-Book-1.title := Transaction-3.title &
Updated~Book~1.subject := Transaction-3.subject &
Updated-Book-1.last-user := "none" &

Updated-Book-1.current-borrower := "none" &
Updated-Book-1.status := available &
Books := Books union Updated-Book-1 %Alset addition

288

event none

REMOVIRG-BOOK instance-of Behavior
exists (book) (book in Books &
book.Book-Id = Transaction-4.Book-Id &
Book.status = available)
-->
Books := Books set~-diff {Book | book in Books &
book.book-id = Transaction-4.Book-Id} Y%set removal

event none

CHECKING-BOOK-QUT instance-of Behavior %’ Book-name are names of objects.
exists (book) (book in Books &
book.Book-1Id = Transaction-5.Book-Id &
Book.status = available) &
exists (user) (user in Users &
user.User-Name = "'ransaction-5.Borrower-Name &
user .book-count < 10)
-—>
Updated-Book-3 := getitem({Book | book in Books &
book.book-id = Transaction-5.Book-id}) &
Updated-Book-3.status := checked-out &
Updated-Book-3.current-borrower := Transaction-5.Borrower-Name &
% Books := Books union Updated-Book-3 &
Updated-Name-1 := getitem({User | user in Users &
user.User-Kame = Transaction-5.Borrower-Name}) &
Updated-Name-1.book-count := Updated-Name-1.book-count + 1
% Users := Users union Updated-Name-1
event none

RETURNING-BOOK instance-of Behavior
exists (book) (book in Books &
book.Book-Id = Transaction-6.Book-Id &
Book.status = checked-out)
-->
Updated-Book-4 := getitem({Book | book in Books &
book.book-id = Transaction-6.Book-id}) &
Updated-Book-4.status := available &
Updated-Book-4.last-user := Tramsaction-6.Borrower-Kame &
Updated-Book-4.current-borrower := "none" &
% Books := Books union Updated-Book-4 &
Updated-Name-2 := getitem({User | user in Users &
user.User-Name = Transaction-6.Borrower-Name}) &
Updated-Kame-2.book~-count := Updated-Name-2.book-count - 1
% Users := Users union Updated-Name-2
event none

LISTIRG-BY-AUTHOR instance-of Behavior
true
-->
Display({Book | Book in Books &

289

book.author = Transaction-10.author})
event none

LISTING-BY-SUBJECT instance-of Behavior
true
-->
Display({Book | book in books &
book.subject = Transaction-8.subject})
event none

LISTING-BY-BORROWER instance-of Behavior
exists (user) (user in Users &
user.User-Name = Transaction-12.Borrower-Name) |
-—>
Display({Book | book in books &
book.current-borrower = Transaction-12.Borrower-Name &
book.status = checked-out})
event none

LISTING-LAST-BORROWER instance-of Behavior
exists (book) (book in Books &
book.Book-Id = Transaction~7.Book-1d)
-=>
Display({Book | book in books &
Book.last-user = Transaction-7.Borrower-Name})
event none

ADDING-USER instance-of Behavior

not exists (user) (user in Users &
user.User-Name = Transaction-9.Borrower-Name)

-—>
Updated-Name-3.user-name := Transaction-9.borrower-name &
Updated-Name-3.kind := Transaction-9.borrower-kind &
Updated-Name-3.book-count := O &
Users := Users union Updated-Name-3 %% Set addition
event none

REMOVING-USER instance-of Behavior
exists (user) (user in Users &
user.User-Name = Transaction-11.Borrower-Name &
user.book-count = 0)
-
Users := Users set-diff {user | user in Users &
user.user-name = Transaction-11.Borrower-Name} %% Set removal
event none

%%% LEVEL 3 %%%
DETERMINING-USER instance-of Behavior

Transaction-2.trans-type = list-books-by-author

290

-->
Transaction—-10 := Transaction-2
event none;

Transaction-2.trans~type = list-books-by-subject
-=>

Transaction-8 := Transaction-2

event none;

Transaction-2.trans-type = list-my-books
->

Transaction-13 := Transaction-2

event none

LISTING-BORROWED-BY-USER instance-of Behavior
true
-=>
Display({Book | book in books &
book.current-borrower = Transaction-13.Borrower-Name})
event none

.,..C.,'|.C.O FLOVS ./..l./. ‘.'./''..

USER-NAME-1 instance-of Flow
flow-link : entity-proc
flow-data : Flow~Name

NEW-TRANS instance-of Flow
flow-link : entity-proc
flow-data : Transaction

USER-TYPE-1 instance-of Flow
flow-link : proc-proc
flow-data : User

TRANSACTION-1 instance-of Flow
flow-link : proc-proc
flow-data : Transaction

TRANSACTION-2 instance-of Flow
flow-link : proc-proc
flow-data : Transaction

UPDATED-BOOK-1 instance-of Flow
flow-link : proc-store
flow~-data : Book

TRARSACTION-3 instance-of Flow

flow-link : proc-proc
flow-data : Transaction

291

UPDATED-BOOK-2 instance-of Flow
flow~link : proc-store
flow-data : Book

TRANSACTION-4 instance-of Flow
flow-link : proc-proc
flow-data : Transaction

UPDATED-NAME-1 instance-~of Flow
flow-link : proc-store
flow-data : User

UPDATED-BOOK-3 instance-of Flow
flow-link : proc-store
flow-data : Book

TRANSACTION-5 instance-of Flow
flow~link : proc-proc
flow-data : Transaction

UPDATED-NAME-2 instance~of Flow
flow-link : proc-store
flow-data : User

UPDATED-BOOK-4 instance-of Flow
flow-link : proc-store
flow-data : Book

TRANSACTION-6 instance-of Flow
flow-link : proc-proc
flow-data : Tramsaction

TRANSACTION-7 instance-of Flow
flow-link : proc-proc
flow-data : Transaction

TRANSACTION-8 instance-of Flow
flow~-link : proc-proc
flow-data : Transaction

TRANSACTION-9 instance-of Flow
flow-link : proc-proc
flow-data : Transaction

TRANSACTION-10 instance-of Flow
flow-link : proc-proc
flow-data : Transaction

TRANSACTION-11 instance-of Flow
flow-link : proc-proc

292

flow-data : Transaction

TRANSACTION-12 instance-of Flow
flow-link : proc-proc
flow-data : Transaction

TRANSACTION-13 instance~of Flow
flow-link : proc-proc
flow-data : Transaction

UPDATED-NAME-3 instance-of Flow
flow-link : proc-store
flow-data : User

UPDATED-NAME-4 instance-of Flow
flow-link : proc-store
flow-data : User

ERROR-MESSAGE-1 instance-of Flow
flow-link : proc-entity
flow-data : message

WARLAAAAAL STORES UAAAAAAANLY

USERS instance-of Store
nature : set
content: user

BOOKS instance-of Store
nature : set
content: book

YAhAhARY%% %% RELATION-TABLE Y%%U%%A%%L%Y

Entity-Relation instance-of Relation-Table

A/4ROTE:
%% the hierarchy

%% Entity Association
USER, ADDS,
USER, REMOVES,
USER, ADDS,
USER, REMOVES,
USER, CHECKS-QUT,
USER, RETURKNS,
USER, GET-SUBJECT-LISTING,
USER, GET-AUTHOR-LISTING,
USER, LISTS-LAST-BORROWED,
USER, LISTS-ALL-BORROWED,

These are associations between entity classes!

This is a result of

Entity %%

USER;
USER;
BOOK;
BOOK;
BOOK;
BOOK;
BOOK;
BOOK;
BOOK ;
BOOK;;

293

USER,

LISTS~OWN-BORROWED,

BOOK;

%Process-Behavior instance-of Relation-Table

%% Process
DETERMINE-TRANS-TYPE,
SET-USER-TYPE,
DETERMINE-STAFF-TRANS,
ADD-BOOK,

REMOVE-BOOK,
CHECK-OUT-BOOK,
RETURN-BOOK,
LIST-BOOKS-BY-AUTHOR,
LIST-BOOKS-BY-SUBJECT,

LIST-BOOKS-BY-BORROWER,

LIST-LAST-BORROWER,
LIST-MY-BOOKS,
ADD~USER,
REMOVE-USER,
DETERMINE-USER-TRANS,

Assoc
IcOo,
ICO,
Ica,
Ico,
Ico,
ICOo,
1C0,
ICO,
Ico,
IcOo,
Ico,
ICo,
IcOo,
IcCOo,
ICo,

Behavior %%
DETERMINE-TRANSACTION;
SETTING-USER-TYPE;
DETERMINING-STAFF;
ADDING-BOOK;
REMOVING-BOOK;
CHECKING-BOOK-OUT;
RETURNING-BQOOK;
LISTIRG-BY-AUTHOR;
LISTING-BY-SUBJECT;
LISTING-BY-BORROWER;
LISTING-LAST-BORROWER;
LISTING-BORROWED-BY-USER;
ADDING-USER;
REMOVING-USER;
DETERMINING-USER;

%Flow-type-things instance-of Relation-Table

%% Object

%%LEVEL 1
QUTSIDE,
OUTSIDE,
SET-USER-TYPE,
SET-USER-TYPE,
DETERMIKE-TRANS-TYPE,
DETERMINE-TRANS-TYPE,

%ALEVEL 2

ADD-BOOK,
DETERMINE-STAFF-TRANS,

REMOVE-BOOK,
DETERMINE-STAFF-TRANS,

CHECK-0UT-BOOK,
CHECK-OUT-BOOK,
DETERMIRE-STAFF-TRANS,
RETURN-BOOK,
RETURN-BOOK,
DETERMINE-STAFF-TRAKS,
DETERMINE-STAFF-TRANS,

DETERMINE-USER-TRANS,

Flow

USER-KAME-1,
NEW-TRANS,
ERROR-MESSAGE-1,
USER-TYPE-1,
TRANSACTION-1,
TRANSACTION-2,

UPDATED-BOOK-1,
TRANSACTION-3,

UPDATED-BOOK-2,
TRANSACTION-4,

UPDATED-NAME-1,
UPDATED-BOOK-3,
TRANSACTION-5,
UPDATED-NAME-2,
UPDATED-BOOK-4,
TRANSACTION-6,
TRANSACTION-7,

TRANSACTION-8,

Object

SET-USER-TYPE;
DETERMINE-TRANS-TYPE;
OQUTSIDE;
DETERMINE-TRANS-TYPE;
DETERMINE-STAFF-TRANS;
DETERMINE-USER-TRAKS;

BOOKS;
ADD-BOOK;

BOOKS;
REMOVE-BOOK ;

USERS;

BOOKS;
CHECK~OUT-BOOK;
USERS;

BOOKS;

RETURN-BOOK;
LIST-LAST-BORROWER;

LIST-BOOKS-BY-SUBJECT;

294

DETERMINE-STAFF-TRAKS,

DETERMINE-USER-TRANKS,
DETERMINE-STAFF-TRANS,

DETERMINE-STAFF-TRANS,
DETERMINE-USER-TRANS,

DETERMINE-STAFF-TRANS,
ADD-USER,

DETERMINE-STAFF-TRANS,
REMOVE-USER,

TRANSACTION-8,

TRANSACTION-10,
TRANSACTION-10,

TRANSACTION-12,

TRANSACTION-13,

TRANSACTION-9,
UPDATED-NAME-3,

TRANSACTION-11,
UPDATED-NAME-4,

295

LIST-BOOKS-BY-SUBJECT;

LIST-BOOKS-BY-AUTHOR;
LIST-BOOKS-BY-AUTHOR;

LIST-BOOKS-BY-BORROWER;
LIST-MY-BOOKS;

ADD-USER;
USERS;

REMOVE-USER;
USERS

E.5 Library Problem REFINE Ezecutable Specification

!t in-package (’RU)
!! in-grammar (’user)

var OML-0bj : object-class subtype-of user-object
var LIBRARY : object-clase subtype-of OML-Obj

type return-values = tuple(validity: symbol,
next-procs : seq(symbol))

%%% Define object classes

var MESSAGE : object-class subtype-of LIBRARY
var MESSAGE-TEXT: map(MESSAGE, string) = {|{}

var TRANSACTION : object-class subtype-of LIBRARY

var TRANSACTION-USER-KIND: map(TRANSACTION, symbol) = {||}
var TRARSACTION-BORROWER-NAME: map(TRANSACTION, string) = {{|}
var TRANSACTION-BORROWER-KIND: map(TRANSACTION, symbol) = {iI}
var TRANSACTION-BOOK-ID: map(TRANSACTION, string) = {||}

var TRANSACTION-AUTHOR: map(TRANSACTION, string) = {ii}

var TRANSACTION-TITLE: map(TRANSACTION, string) = {[[}

var TRANSACTION-SUBJECT: map(TRANSACTION, string) = {I|}

var TRANSACTION-TRANS-TYPE: map(TRANSACTION, symbol) = {||}

var FLOW-NAME : object-class subtype-of LIBRARY
var FLOW-NAME-N: map(FLOW-NAME, string) = {11}

var BOOK : object-class subtype-of LIBRARY

var BOOK-BOOK-ID: map(BOOK, string) = {|[}

var BOOK-AUTHOR: map(BOOK, string) = {II}

var BOOK-TITLE: map(BOOK, string) = {||}

var BOOK-SUBJECT: map(BOOK, string) = {il}

var BOOK-LAST-USER: map(BOOK, string) = {||}

var BOOK-CURRENT-BORROWER: map(BOOK, string) = {|[}
var BOOK-STATUS: map(BOOK, symbol) = {]|}

var USER : object-class subtype-of LIBRARY

var USER-USER-NAME: map(USER, string) = {{[}
var USER-KIND: map(USER, symbol) = {||}

var USER-BOOK-COUNT: wap(USER, integer) = {[[}

%%% Define instances of object classes

var ERROR~-MESSAGE : MESSAGE =
set-attrs(make—-object (’MESSAGE),
‘name, ’+ERROR-MESSAGE,
*MESSAGE-TEXT, "Unauthorized User. See Librarian for assistance.')

var QOUTSIDE-ENTITY : object-class subtype-of LIBRARY
var OUTSIDE : OUTSIDE-ENTITY =
set-attrs(make-object (’OUTSIDE-ENTITY),
'name, '+0UTSIDE)

296

var BOOK2 : BOOK =
set-attrs(make-object (’BOOK),

‘name, ’*B0O0K2,
’BOOK-BOOK-ID, "QA76.2",
’BOOK-AUTHOR, "Silberschatz",
’BOOK-TITLE, "Operating System Concepts',
’BOOK~SUBJECT, "operating systems”,
’BOOK-LAST-USER, "none"”,
’BOOK-CURRENT-BORROWER, "Mallare",
*BODK-STATUS, ’>CHECKED-OUT)

var BOOK1 : BOOK =
set-attrs(make-object (’BOOK),
’name, ’*BOOK1,
’BOOK-BOOK-ID, "QA76.1",
’BOOK-AUTHOR, ’RITCHIE,

’BOOK-TITLE, "The C Programming Language",

’BODK-SUBJECT, "programming",
>BOOK-LAST~USER, "none",
’BOOK-CURRENT-BORROWER, "Boom",
’BOOK-STATUS, °®CHECKED-0UT)

var MALLARE : USER =
set-attrs(make-object (’USER),
name, ’*MALLARE,
’USER-USER-NAME, "mallare",
USER-KIND, ’ORDINARY,
*USER-BOOK-COUNT, 1)

var BOOM : USER =
set-attrs(make-object (’USER),
‘name, ’*BO0M,
JUSER-USER-NAME, "boom",
USER-KIND, ’ORDINARY,
*USER-BOOK-COUNT, 1)

var LIBRARIAN : USER =
set-attrs(make-object (’USER),
‘name, ’*LIBRARIAN,
’USER-USER-NAME, "librarian",
USER-KIND, ’STAFF,
'USER-BOOK-COUNT, 0)
%%% Define Store DObjects
var BOOKS : set(BOOK) = {x | (x : BOOK) BOOK(x)}
var USERS : set(USER) = {x | (x : USER) USER(x)}
%%% Define objects for each flow object
var ERROR-MESSAGE-1 : MESSAGE =
set-attrs(make-object (’MESSAGE),
’name, ’+*ERROR-MESSAGE-1)

var UPDATED-NAME-4 : USER =

297

set-attrs(make-object ("USER),
‘name, ’*UPDATED-NAME-4)

var UPDATED-NAME-3 : USER =
set-attrs (make-object ("USER),
’name, ’*UPDATED-NAME-3)

var TRANSACTION-13 : TRANSACTION =
set-attrs(make-object (?TRANSACTION),
’name, ’>*TRANSACTION-13)

var TRANSACTION-12 : TRANSACTION =
set-attrs(make-object (’TRANSACTION),
’name, ’*TRANSACTION-12)

var TRANSACTION-11 : TRANSACTION =
set-attrs(make-object (’TRANSACTION),
’name, ’*TRANSACTION-11)

var TRANSACTION-10 : TRANSACTION =
set-attra(make-object (*TRANSACTION),
’name, *s*TRANSACTION-10)

var TRANSACTION-9 : TRANSACTION =
set-attrs(make-object (’TRANSACTION),
‘name, ’*TRANSACTION-9)

var TRANSACTION-8 : TRANSACTION =
set-attrs(make-object (*TRANSACTION),
’name, ’#TRANSACTION-8)

var TRANSACTION-7 : TRANSACTION =
set-attrs(make-object (’TRANSACTION),
’name, **TRANSACTION-7)

var TRANSACTION-6 : TRANSACTIORN =
set-attrs(make-object (’TRANSACTION),
’name, ’*TRANSACTION-6)

var UPDATED-BOOK-4 : BOOK =
set-attrs(make-object (’BOOK),
‘name, ’*UPDATED-BOOK-4)

var UPDATED-NAME-2 : USER =
set-attrs(make-object (USER),
’name, ’*UPDATED-NAME-2)

var TRANSACTION-5 : TRANSACTION =
set-attrs(make~object (*TRANSACTION),
‘name, ’#*TRANSACTION-5)

var UPDATED-BOOK-3 : BOOK =
set-attrs(make-object (’BOOK),
’name, ’*UPDATED-BOOK-3)

var UPDATED-NAME-1 : USER =

2908

set-attrs(make-oLject ('USER),
‘name, ’$UPDATED-NAME-1)

var TRANSACTION-4 : TRANSACTION =
set-attrs(make-object (> TRANSACTION),
’name, ’*TRANSACTION-4)

var UPDATED-BOOK-2 : BOOK =
set-attras(make-object (’BOOK),
‘name, ’*UPDATED-BOOK-2)

var TRANSACTIOR-3 : TRANSACTION =
set-attrs(make-object (’TRANSACTION),
’name, ’*TRANSACTION-3)

var UPDATED-BOOK-1 : BOOK =
set-attrs(make-object (*BOOK),
’name, ’*UPDATED-BOOK-1)

var TRANSACTION-2 : TRANSACTION =
set-attrs(make-object (*TRANSACTION),
’name, ’sTRANSACTION-2)

var TRANSACTION-1 : TRANSAC1INN =
set-attrs(make-object (*TRANSACTION),
’name, ’*sTRANSACTION-1)

var USER-TYPE-1 : USER =
set-attrs(make-object ('USER),
‘name, ’sUSER-TYPE-1)

var NEW-TRANS : TRANSACTION =
set-attrs(make-object (*TRANSACTION),
‘name, ’+NEW-TRANS)

var USER-NAME-1 : FLOW-NAME =
set-attrs(make-object (*FLOW-NAME),
’name, ’#USER-NAME-1)

%%% Define functions for behavior objects

function LISTING-BORROWED-BY-USER() =
let(return-symbol : symbol = undefined)

((if true
then
(enumerate element over
{BOOK | (BOOK) (BOOK in BOOKS) &
(BOOK-CURRENT-BORROWER(BOOK) = TRANSACTION-BORROWER-NAME (TRANSACTION-13))} do
format(true, "“\\pp\\ ",element))
)
return-syabol

function DETERMINING-USER() =
let(return-symbol : symbol = undefined)

299

((if (TRANSACTION-TRANS-TYPE(TRANSACTION-2) = ’LIST-BOOKS-BY-AUTHOR)
then
(assign-object (*sTRANSACTION-2, > *TRANSACTION-10, * TRANSACTION)
)

);

(if (TRANSACTION-TRANS-TYPE(TRANSACTION-2) = °LIST-BOOKS-BY-SUBJECT)
then

(assign-object (? «TRANSACTION-2, **TRANSACTION-8, *TRANSACTION)

)

);

(if (TRANSACTION-TRANS-TYPE(TRANSACTION-2) = ’LIST-MY-BOOKS)
then

(asaign-object (> «TRANSACTION-2, ’*TRANSACTION-13, *TRANSACTION)

)

3);
return-symbol

function REMOVING-USER() =
let(return-symbol : symbol = undefined)

((it (ex (USER) ((USER in USERS) &
(USER-USER-NAME (USER) = TRANSACTION-BORROWER-NAME (TRANSACTION-11)) &
(USER-BOOK-COUNT (USER) = 0)))
then
(USERS <- (setdiff(USERS, {USER | (USER) (USER in USERS) &
(USER-USER-NAME (USER) = TRANSACTION-BORROWER-NAME (TRANSACTION-11))})))
));
return-symbol

function ADDING-USER() =
let(return-symbol : symbol = undefined)

((if ~((ex (USER) ((USER in USERS) &
(USER-USER~NAME(USER) = TRANSACTION-BORROWER-NAME (TRANSACTION-9)))))
then
(USER-USER-NAME (UPDATED-NAME-3) <- TRANSACTION-BORROWER-NAME (TRANSACTION-9));
(USER-KIND (UPDATED-NAME-3) <~ TRANSACTION-BORROWER-KIND(TRANSACTION-9));
(USER-BOOK-COUNT (UPDATED-NAME-3) <- 0);
(USERS <~ (USERS with copy-object(UPDATED-NAME-3)))
»;
return-symbol

function LISTING-LAST-BORROWER() =
let(return-symbol : symbol = undefined)

((it (ex (BOOK) ((BOOK in BOOKS) &
(BOOK-BOOK-ID(BOOK) = TRANSACTION-BOOK-ID(TRANSACTION-7Y)))
then
(enumerate element over
{BOOK | (POOK) (BOOK in BOOKS) &
(BOOK-LAST-USER(KEOOK) = TRANSACTION-BORROWER-NAME (TRANSACTION-7))} do
format (true, "“\\pp\\ ",element))
)
return-symbol

300

function LISTING-BY-BORROWER() =
let(return-symbol : symbol = undefined)

((if (ex (USER) ((USER in USERS) &
(USER-USER-NAME (USER) = TRANSACTION-BORROWER-NAME (TRANSACTION-12))))
then
(enumerate element over
{BOOK | (BOOK) (BOOK in BOOKS) &
(BOOK-CURRENT-BORROWER (BOUK) = TRANSACTION-BORROWER-NAME(TRANSACTION-12)) &
(BOOK-STATUS (BODK) = ’CHECKED-OUT)} do
format (true, "“\\pp\\ ",element))
));
return-symbol

function LISTING-BY-SUBJECT() =
let(return-symbol : symbol = undefined)

((if true
then
(enumerate element over
{BOOK | (BOOK) (BOOK in BOOKS) &
(BOOK-SUBJECT (BOOK) = TRANSACTION-SUBJECT(TRANSACTION-8))} do
format(true, "“\\pp\\ ",element))
»;
return-symbol

function LISTING-BY-AUTHOR() =
let(return-symbol : symbol = undefined)

((if true
then
(enumerate element over
{BOOK | (BOOK) (BOOK in BOOKS) &
(BOOK-AUTHOR(BOOK) = TRANSACTION-AUTHOR(TRANSACTION-10))} do
format (true, "~\\pp\\ ",element))
M
return-symbol

function RETURNING-BOOK() =
let(return-symbol : symbol = undefined)

((if (ex (BOOK)((BOOK in BOOKS) &
(BOOK-BOOK-ID(BOOK) = TRANSACTION-BOOK-ID(TRANSACTION-6)) &
(BOOK-STATUS(BOOK) = °>CHECKED-QUT)))
then
(UPDATED-BOOK-4 <~ (arb({BOOK | (BOOK) (BOOK in BOOKS) &
(BOOK-BOOK-ID(BOOK) = TRANSACTION-BOOK-ID(TRANSACTION-6))})));
(BOOK-STATUS (UPDATED-BOOK-4) <~ ’AVAILABLE);
(BOOK-LAST-USER (UPDATED-BOOK-4) <- TRANSACTION-BORROWER-NAME (TRANSACTION-6));
(BOOK-CURRENT-BORROWER (UPDATED-B00K-4) <- "none");
(UPDATED-NAME-2 <~ (arb({USER | (USER) (USER in USERS) &
(USER-USER-NAME (USER) = TRANSACTION-BORROWER-NAME(TRANSACTION-6))})));
(USER-BOOK-COUNT (UPDATED-NAME-2) <- (USER-BOOK-COUNT (UPDATED-NAME-2) - 1))
3
return-symbol

301

function CHECKING-BOUOK-QUT() =
let(return-symbol : symbol = undefined)

((if (ex (BOOK) ((BOOK in BOOKS) &
(BOOK-BOOK-ID(BOOK) = TRANSACTION-BOOK-ID(TRANSACTION-5)) &
(BODK-STATUS(BOOK) = >AVAILABLE)))
and (ex (USER) ((USER in USERS) &
(USER-USER-NAME (USER) = TRANSACTION-BORROWER-NAME (TRANSACTION-5)) &
(USER-BOOK-COUNT (USER) < 10)))
then
(UPDATED-BOOK-3 <- (arb({BOOK | (BOOK) (BOOK in BOOKS) &
(BOOX-BOOK~ID(BOOK) = TRANSACTION-BOOK-ID(TRANSACTION-5))})));
(BOOK-STATUS (UPDATED-BOOK~3) <- ’CHECKED-OUT);
(BOOK-CURRENT-BORROWER (UPDATED-BOOK-3) <~ TRANSACTION-BORROWER-NAME (TRANSACTION-5));
(UPDATED-NAME-1 <- (arb({USER | (USER) (USER in USERS) &
(USER-USER-NAME (USER) = TRANSACTION-BORROWER-NAME (TRANSACTION-5))})));
(USER-BCOK-COUNT (UPDATED-NAME-1) <~ (USER-BOOK-COUNT (UPDATED-NAME-1) + 1))
));

return-symbol

function REMOVING-BOOK() =
let(return-symbol : symbol = undefined)

((if (ex (BOOK) ((BOOK in BOOKS) &
(BOOK-BOOK-ID(BOOK) = TRANSACTION-BOOK~-ID(TRANSACTION-4)) &
(BOOK-STATUS(BOOK) = ’AVAILABLE)))
then
(BOOKS <- (setdiff(BOOKS, {BOOK | (BOOK) (BOOK in BOOKS) &
(BOOK-BOOK-ID(BOOK) = TRANSACTION-BOOK-ID(TRANSACTIOR-4))})))
)

return-symbol

function ADDING-BOOK() =
let(return-symbol : symbol = undefined)

((if ~“((ex (BOOK) ((BOOK in BODKS) &
(BOOK-BOOK-ID(BOOK) = TRANSACTION-BOOK-ID(TRANSACTION-3)))))
then
(BOOK-BOOK-ID(UPDATED-BOOK-1) <- TRANSACTION-BOOK-ID(TRANSACTION-3));
(BOOK-AUTHOR (UPDATED~BO0OK-1) <- TRANSACTION-AUTHOR(TRANSACTION-3));
(BOOK-TITLE(UPDATED-BOOK-1) <- TRANSACTION-TITLE(TRANSACTION-3));
(BOOK-SUBJECT (UPDATED-BOOK-1) <~ TRANSACTION-SUBJECT (TRANSACTION-3));
(BOOK-LAST-USER (UPDATED-BOOK~-1) <- "none");
(BOOK~-CURRENT~-BORROWER (UPDATED-BOOK-1) <- 'none");
(BOOK-STATUS(UPDATED-BOOK-1) <- ’AVAILABLE);
(BOOKS <~ (BOOKS with copy-object(UPDATED-BOOK-1)))
3);
return-symbol

function DETERMINING-STAFF() =
let(return-symbol : symbol = undefined)

((if (TRANSACTION-TRANS-TYPE(TRANSACTION-1) = ’ADD-BOOK)

then
(assign-object (’*TRANSACTION-1, ’#*TRANSACTION-3, *TRANSACTION)

302

)
);

(if (TRANSACTION-TRANS-TYPE(TRANSACTION-1) = ’REMOVE-BOOK)
then

(assign-object (**TRANSACTION-1, ’#TRANSACTION~4, *TRANSACTION)

)

)

(if (TRANSACTION-TRAKS-TYPE(TRANSACTION-1) = ’CHECK-QUT-BOOK)
then

(assign-object (**TRANSACTION-1, ' *TRANSACTIOK~5, *TRANSACTION)

)

);

(if (TRANSACTION-TRANS-TYPE(TRANSACTION-1) = °*RETURN-BOOK)
then

(assign-object (**TRANSACTION-1, >*TRANSACTION~6, *TRANSACTION)

)

);

(if (TRANSACTION~TRANS-TYPE(TRANSACTION-1) = °’LIST-BO0OKS-BY-AUTHOR)
then

(assign-object (’#*TRANSACTION-1, >*TRANSACTION-10, >TRANSACTION)

)

) H

(if (TRANSACTION-TRANS-TYPE(TRANSACTION-1) = ’LIST-BOOKS~BY-SUBJECT)
then

(assign-object (’*TRANSACTION-1, >*TRANSACTION-8, *TRANSACTION)

)

);

(if (TRANSACTION-TRANS-TYPE(TRANSACTION-1) = ’LIST-BOOKS-BY-BORROWER)
then

(assign-object (’#TRANSACTION-1, ’*TRANSACTION-12, > TRANSACTION)

)

JH

(if (TRANSACTION-TRANS-TYPE(TRANSACTION-1) = ’LIST-LAST-BORROWER)
then

(assign-object (’*TRANSACTION-1, > *TRANSACTION-7, >TRANSACTION)

)

);

(if (TRANSACTION-TRANS-TYPE(TRANSACTION-1) = ’ADD-USER)
then

(assign-object (**TRANSACTION-1, **TRANSACTION-9, *TRANSACTION)

)

)

(if (TRANSACTION-TRANS-TYPE(TRANSACTION-1) = ’*REMOVE-USER)
then

(assign-object (’*TRANSACTION-1, ’*TRANSACTION-11,’ TRANSACTION)

)

));

303

return-symbol

function DETERMINE-TRANSACTION() =
let(return-symbol : symbol = undefined)

((if (USER-KIND(USER-TYPE-~1) = ’STAFF)
then
(assign-object (*«NEW-TRANS, ’*TRANSACTION-1, ' TRANSACTION)
);
(TRANSACTION-USER-KIND(TRANSACTION-1) <- ’STAFF)
)3

(if (USER-KIND(USER-TYPE-1) = *ORDINARY)
then

(assign-object(’>*NEW-TRANS, ’*TRANSACTION-2, > TRANSACTION)
);

(TRANSACTION-USER-KIND(TRANSACTION-2) <~ ’ORDINARY);
(TRANSACTION-BORROWER-NAME (TRANSACTION-2) <- USER-USER-NAME(USER-TYPE-1))
));

return-symbol

function SETTING-USER-TYPE() =
let (return-symbol : symbol = undefined)

((if (ex (USER)((USER in USERS) &
(USER-USER~NAME (USER) = FLOW-NAME-N(USER-NAME-1)) &
(USER-KIND(USER) = ’STAFF)))
then

(USER-KIND (USER-TYPE-1) <~ ’STAFF)

);

(if (ex (USER) ((USER in USERS) &

(USER-USER-NAME (USER) = FLOW-NAME-N(USER-NAME-1)) &

(USER-KIND(USER) = ’QRDINARY)))

then

(USER-KIND(USER-TYPE-1) <- ’ORDINARY);
(USER-USER-NAME (USER-TYPE-1) <- FLOW-NAME-N(USER-NAME-1))
)H

(if ~“((ex (USER) ((USER in USERS) &
(USER-USER~NAME (USER) = FLOW-NAME-N(USER-NAME-1)))))
then
(format (true, "~\\pp\\ ",MESSAGE-TEXT(ERROR-MESSAGE)))
)
return-symbol

%%4% Define function for each state object
%4% Define function for each process object

function LIST-MY-BOOKS(dowhat : symbol) : return-values =
let (int-flow-set : seq(tuple(flow-type : symbol, flow-name : aymbol)) =
[<’TRANSACTION, ’*TRANSACTION-13>],
ext-flow-get : seq(tuple(flow-type : symbol, fiow-name : symbol)) =
a,

intflows-valid : boolean = false,

304

check-flow : object = undefined,
return-tuple : return-values = <’invalid,[]>»)

(if size(int-flow-set) = 0 then intflows-valid <- true
else
(enumerate flow over int~flow-set do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do
if defined?(retrieve-attiribute(check-flow, flow-attr)) then
intflows-valid <- true)));

(if dowhat = ’execute then
(if intflows-valid then %% if valid, check ext inflows
(enumerate flow over ext-flow-set do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(if (ex (x) (x in return-attribute-list(check-flow) &
undefined? (retrieve-attribute(check-flow, x)))) then
format (true, "Enter data for “A"%", name(check-flow));

check~flow <- modify-object(check-flow)));

LISTING-BORROWED-BY-USER();

(enumerate flow over concat(int-flow-set, ext-flow-set) do
check-flow <~ find-object(flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check~flow) do

store~attribute(check-flow, flow-attr, undefined)));
return-tuple <- <’valid, []>

else
format (true, "Process cannot be executed.

All in-flows are not defined."%");
return~tuple <- <’invalid, [1>)

else

if intflows-valid then return-tuple <- <’valid, [}>
elase return-tuple <- <’invalid,[1>);
return-tuple

1yy33
function DETERMINE-USER-TRANS (dowhat : symbol) : return-values =
let (int-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
[<?TRANSACTION, **TRANSACTION-2>],
ext-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
a,
intflows-valid : boolean = false,
check-flow : object = undefined,
return-tuple : return-values = <’invalid,[]>)

(if size(int~flow-set) = 0 then intflows-valid <~ true
else
(enumerate flow over int-flow-set do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do
if defined?(retrieve-attribute(check-flow, flow-attr)) then
intflows-valid <~ true)));

(if dowhat = ’execute then

(if intflows-valid then %% if valid, check ext inflows
(enumerate flov over ext-flow-set do

305

check-flov <- find-object(flow.flou~type, flow.flow-name);
(if (ex (x) (x in return-attribute-list(check-flow) &
undefined? (retrieve-attribute(check-flow, x)))) then
format (true, "Enter data for "A~%", name(check-flow));
check-flow <~ modify-object(check-flow)));
DETERMINING-USER();

(enumerate flow over concat{(int-flow-set, ext-flow-set) do
check-flow <~ find-object(flow.flow~type, flov.flov-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

store-attribute(check-flow, flow-attr, undefined)));
return-tuple <- <’valid, [’LIST-MY CN0KS, ’LIST-BOOKS-BY-AUTHCR,
*LIST-BOOKS~BY-SUBJECT]>

else
format (true, "Process cannot be executed.

All in-flows are not defined."%");
return-tuple <- <’invalid, [1>)

else

if intflows-valid then return-tuple <- <’valid,[}>
else return-tuple <- <’invalid,[1>);
return-tuple

AA%%
function REMOVE-USER(dowhat : symbol) : return-values =
let (int-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
[<’>TRANSACTION, >*TRANSACTION-11>],
ext-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
i,
intflows-valid : boolean = false,
check-flow : object = undefined,
return-tuple : return-values = <’invalid,[]>)

(if size(int-flow-set) = 0 then intflows-valid <- true
else
(enumerate flow over int-flow-set do
check-flow <~ find-object(flow.flow-type, flov.flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do
if defined?(retrieve-attribute(check-flow, flow-attr)) then
intflows-valid <- true)));

(if dowhat = ’execute then
(if intflows-valid then %% if valid, check ext inflows
(enumerate flow over ext-flow-set do
check-flow <- find-object(flow.flow-type, flov.flow-name);
(if (ex (x) (x in return-attribute-list(check-flow) &
undefined?(retrieve-attribute(check-flow, x)))) then
format (true, "Enter data for “A~%", name(check-flow));

check-flow <- modify-object(check-flow)));

REMOVING-USER();

(enumerate flow over concat(int-flow-set, ext~flow-set) do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

store-attribute(check-flow, flow-attr, undefined)));
return-tuple <- <’valid, (1>

else

306

format (true, "Process cannot be executed.
All in-flows are not defined.~%");
return-tuple <- <’invalid, []>)
else
if intflows-valid then return-tuple <- <’valid,[]>
else return-tuple <~ <’invalid, [J>);
return-tuple

"%
function ADD-USER(dowhat : symbol) : return-values =
let (int-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
[<’TRANSACTION, > *TRANSACTION-9>],
ext-flov-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
[]’
intflows-valid : boolean = false,
check-flow : object = undefined,
return-tuple : return-values = <’invalid,[]1>)

(if size(int-flou~-set) = 0 then intflovs-valid <- true
else
(enumerate flow over int-flow-set do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(enumerate flow~attr over return-attribute-list(check-flow) do
if defined?(retrieve-attribute(check-flow, flow~attr)) then
intflows-valid <~ true)));

(if dowhat = ’execute then
(if intflows-valid then %% if valid, check ext inflows
(enumerate flow over ext-flow-set do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(if (ex (x) (x in return-attribute-list(check-flow) &
undefined? (retrieve-attribute(check-flow, x)))) then
format (true, "Enter data for “A~%", name(check-flow));

check-flow <- modify-object(check-flow)));

ADDING-USER(Q);

(enumerate flow over concat(int-flow-set, ext-flow-set) do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

store-attribute(check-flow, flow-attr, undefined))):
return-tuple <~ <’valid, []>

else
format (true, "Process cannot be executed.

All in-flows are not defined.~%");
return-tuple <~ <’ipvalid, [1>)
else

if intflows-yalid then return-tuple <- <’valid,[}>
else return-tuple <- <’invalid, [1>);
return-tuple

%A%%
function LIST-LAST-BORROWER (dowhat : symbol) : return-values =

let (int-flow-set : seq(tuple(flow-type : symbol, flov-name : symbol)) =
[<’TRANSACTION, ’ #TRANSACTION-7>],

ext-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
a,

307

intflows-valid : boolean = false,
check-flow : object = undefined,
return-tuple : return-values = <’invalid,(]1>)

(if size(int-flow-set) = 0 then intflows~valid <- true
else
(enumerate flow over int-flow-set do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do
if defined?(retrieve~attribute(check-flow, flow-attr)) then
intflows-valid <- true)));

(if dovhat = ’execute then
(if intflows-valid then %% if valid, check ext inflows
(enumerate flow over ext-flow-set do
check-flow <- find-object(flow.flow-type, flov.flow-name);
(if (ex (x) (x in return-attribute-list(check-flow) 2
undefined?(retrieve-attribute(check-flow, x)))) then
format (true, "Enter data for ~“A~%", name(check-flow));

check-flow <- modify-object(check-flow)));
LISTING-LAST~-BORROWER(Q) ;

(enumerate flow over concat(int-flow-set, ext-flow-set) do
check-flow <- find-object{(flow.flow-type, flov.flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

store~-attribute(check-flow, flov-attr, undefined)));
return-tuple <- <’valid, (1>
else

format(true, "Process cannot be executed.

All in-flovs are not defined. %");
return-tuple <- <’invalid, [1>)
else
if intflows-valid then return~tuple <~ <’valid,{]>
else return-tuple <- <’invalid,[1>);
return-tuple

A%
function LIST-BOOKS-BY-BORROWER(dowhat : symbol) : return-values =

let (int-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
[<’TRANSACTION, ’*TRANSACTION-12>],

ext-flov-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
a, :

intflowa-valid : boolean = false,
check-flow : object = undefined,
return-tuple : return-values = <’invalid,[]>)

(if size(int-flow-set) = 0 then intflows-valid <- true
else

(enumerate flow over int-flow-set do

check-flow <- find-object(flow.flowv-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list{(check-flow) do

if defined?(retrieve-attribute(check-flow, flow-attr)) then
intflows-valid <- true)));

(if dowhat = ’execute then
(if intflows-valid then %% if valid, check ext inflows

3o8

(enumerate flow over ext-flow-set do
check-flow <- find-object(flow.flow-type, flow.flou-name);
(if (ex (x) (x in return-attribute-list(check-flow) &
undefined? (retrieve-attribute(check-flow, x)))) then
format (true, "Enter data for “A~%", name(check-flow));
check-flow <~ modify-object(check-flow)));
LISTING-BY-BORROWER() ;

(enumerate flow over concat(int-flow-set, ext-flow-set) do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

store-attribute(check-flow, flowv-attr, undefined)));
return-tuple <- <’valid, [1>

else
format (true, "Process cannot be executed.

Al)l in-flows are not defined.~%");
return-tuple <- <’invalid, [1>)

else

if intflows-valid then return-tuple <- <’valid, (1>
else return-tuple <- <’invalid, [1>);
return-tuple

AUA%
function LIST-BOOKS-BY-SUBJECT(dowhat : symbol) : return-values =
let (int-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
[<’TRANSACTION, ’*TRANSACTION-8>],
ext-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
a,
intflows~valid : boolean = false,
check-flow : object = undefined,
return-tuple : return-values = <’invalid,[]1>)

(if size(int-flow-set) = 0 then intflows-valid <- true
else
(enumerate flow over int-flow-set do
check-flow <~ find-object(flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do
if defined?(retrieve-attribute(check-flow, flow-attr)) then
intflows-valid <- true)));

(if dowhat = ’execute then
(if intflows-valid then %% if valid, check ext inflows
(enumerate flow over ext-flow-set do
check-flov <- find-object(flow.flow-type, flow.flow-name);
(if (ex (x) (x in return-attribute-list(check-flow) &
undefined?(retrieve-attribute(check-flow, x)))) then
format (true, "Enter data for ~A~%", name(check-flow));

check~flow <- modify-object(check-flow)));

LISTING-BY~SUBJECT();

(enumerate flow over concat(int-flow-set, ext-flow-set) do
check-flow <- find-object(flow.flow-type, flow.flov-name);
(enunerate flov-attr over return-attribute-list(check-flow) do

store-attribute(check-flow, flow-attr, undefined)});
return~tuple <- <’valid, []>

else

309

format (true, "Process cannot be executed.
All in-flows are not defined. ¥");
return-tuple <- <’invalid, []>)
else
if intflows-valid then return-tuple <- <’valid,[]>
else return-tuple <- <’invalid,[1>);
return-tuple

XAA%
function LIST-BOOKS-BY-AUTHOR(dowhat : symbol) : return-values =
let (int-flow-set : seq(tuple(flow-type : symbol, flov-name : symbol)) =
[<’>TRANSACTION, ’*TRANSACTION-10>],
ext-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
a,
intflows-valid : boolean = false,
check-flow : object = undefined,
return-tuple : return-values = <’invalid,[]1>)

(if size(int-flow-set) = 0 then intflows-valid <- true
else
(enumerate flow over int-flow-set do
check-flow <~ find-object(flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do
if defined?(retrieve-attribute(check-flow, flow-attr)) then
intflows-valid <- true)));

(if dowhat = ’execute then
(if intflows-valid then %% if valid, check ext inflows
(enumerate flow over ext-flow-set do
check~flow <~ find-object(flow.flow-type, flow.flow-name);
(if (ex (x) (x in return-attribute-list(check-flow) &
undefined?(retrieve-attribute(check-flow, x)))) then
format (true, "Enter data for “A~%", name(check-flow));

check-flow <- modify-object(check-flow)));

LISTING~-BY-AUTHOR() ;

(enumerate flow over concat(int-flow-set, ext-flow-set) do
check-flow <~ find-object(flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

store-attribute(check-flow, flow-attr, undefined)));
return-tuple <- <’valid, [1>

else
format (true, "Process cannot be executed.

All in-flows are not defined."%");
return-tuple <- <’invalid, (1>)

else

if intflows-valid then return-tuple <- <’valid, []>
else return-tuple <- <’invalid,[1>);
return-tuple

AA%%
function RETURN-BOOK(dowhat : symbol) : return-values =

let (int-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
(<’TRANSACTION, ’*TRANSACTION-6>],

ext-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
a,

310

intflows-valid : boolean = false,
check~flow : object = undefined,
return-tuple : return~values = <’invalid,[]>)

(if size(int-flow-set) = 0 then intflows-valid <- true
else
(enumerate flow over int-flow-set do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check~flow) do
if defined?(retrieve-attribute(check-flow, flow-attr)) then
intflows-valid <~ true)));

(if dowhat = ’execute then
(if intflows-valid then %% if valid, check ext inflows
(enumerate flow over ext-flow-set do
check-flow <- find-object(flow.flow~type, flow.flow-name);
(if (ex (x) (x in return-attribute-list(check-flow) &
undefined?(retrieve-attribute(check-flow, x)))) then
format (true, "Enter data for ~“A~%", name(check-flow));
check-flow <~ modify-object(check-flow)));
RETURNING-BOOK();

(enumerate flow over concat(int-flow-set, ext-flow-set) do
check-flow <- find-object(flow.flow-type, flovw.flow-name);
(enumerate flow~attr over return-attribute-list(check-flow) do

store-attribute(check-flow, flow-attr, undefined)));
return-tuple <- <’valid, [I>

else
format (true, "Process cannot be executed.

All in-flows are not defined. " %");
return-tuple <- <’invalid, [1>)

else

if intflows-valid then return-tuple <- <’valid, [1>
else return-tuple <- <’invalid, [1>);
return-tuple

YA ¥4
function CHECK-QUT-BOOK (dovhat : symbol) : return-values =
let (int-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
[<’TRANSACTION, >*TRANSACTIOR-5>],
ext-flov-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
a,
intflows-valid : boolean = false,
check-flow : object = undefined,
return-tuple : return-values = <’invalid,[]>)

(if size(int-flow-set) = 0 then intflows-valid <- true
else
(enumerate flow over int-flow-set do
check-flow <- find-object(flow.flow~-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list{(check-flow) do
if defined?(retrieve-attribute(check-flow, flow-attr)) then
intflovs-valid <- true)));

(if dowhat = ’execute then
(if intflows-valid then %% if valid, check ext inflows

311

(enumerate flow over ext-flow-set do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(if (ex (x) (x in return-attribute-list(check-flow) &
undefined? (retrieve-attribute(check~flow, x)))) then
format (true, "Enter data for ~A~%", name(check-flow));
check-flow <- modify-object(check-flow)));
CHECKING-BOOK-OUT() ;

(enumerate flow over concat(int-flow-set, ext-flow-set) do
check-flow <- find-object(flow.flow-type, flov.flov-name);
(enumerate flow~attr over return-attribute-list(check-flow) do

store-attribute(check-flow, flow-attr, undefined)));
return-tuple <- <’valid, [I>

else
format (true, "Process cannot be executed.

All in-flows are not defined.“%");
return-tuple <- <’invalid, []>)

else

if intflows-valid then return-tuple <- <’valid,[]>
else return-tuple <~ <’invalid,[1>);
return-tuple

AANA
function REMOVE-BOOK(dowhat : symbol) : return-values =
let (int-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
[<’TRANSACTION, **TRANSACTION-4>],
ext~-flow-set : seq(tuple(flow-type : symbol, flow~-name : symbol)) =
a,
intflows-valid : boolean = false,
check-flov : object = undefined,
return-tuple : return-values = <’invalid, [1>)

(if size(int-flow-set) = 0 then intflows-valid <~ true
else
(enumerate flow over int-flow-set do
check-flow <- find-object(flow.flow-type, flovw.flow-name);
(enumerate flov-attr over return-attribute-list(check-flow) do
if defined?(retrieve-attribute(check-flow, flow-attr)) then
intflows-valid <~ true)));

(if dowhat = ’execute then
(if intflows-valid then %% if valid, check ext inflows
(enumerate flovw over ext-flow-set do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(if (ex (x) (x in return-attribute-1list(check-flow) &
undefined? (retrieve-attribute(check-flow, x)))) then
format (true, "Enter data for ~A~%", name(check-flow));

check-flow <- modify-object(check-flow)));

REMOVING-BOOK();

(enumerate flow over concat(int-flow-set, ext-flow-set) do
check-flow <- find-object(flow.flow-type, flow.flov-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

store-attribute(check-flow, flow-attr, undefined)));
return-tuple <- <’valid, [1>

else

312

format (true, "Process cannot be executed.
All in-flows are not defined. %");
return-tuple <~ <’invalid, [1>)
else
if intflows-valid then return-tuple <- <’valid, (>
else return-tuple <- <’invalid,[1>);
return-tuple

A%
function ADD-BOOK(dowhat : symbol) : return-values =
let (int-flow-set : seq(tuple(flow-type : symbol, flov-name : symbol)) =
[<’TRARSACTION, >*TRANSACTION-3>],
ext-flow-set : seq(tuple(flov-type : symbol, flov-name : symbol)) =
a,
intflowa-valid : boolean = false,
check-flow : object = undefined,
return-tuple : return-values = <’invalid,[]>)

(if size(int-flow-set) = 0 then intflows-valid <- true
else
(enumerate flow over int-flow-set do
check-flow <- find-object(flow.flow-type, flow.flovw-name);
(enumerate flow-attr over return-attribute-list(check-flow) do
if defined?(retrieve-attribute(check-flow, flow-attr)) then
intflows-valid <- true)));

(if dowhat = ’execute then
(if intflows-valid then %% if valid, check ext inflows
(enumerate flow over ext-flow-set do
check-flow <~ find-object(flow.flow-type, flov.flow-name);
(if (ex (x) (x in return-attribute-list(check-flow) &
undefined?(retrieve-attribute(check-flow, x)))) then
format (true, "Enter data for "A~Y%", name(check-flow));

check-flow <- modify-object(check-flow)));

ADDING-BOOK() ;

(enumerate flow over concat(int-flow-set, ext-flow-set) do
check-flow <- find-object(flow.flow-type, flov.flov-name);
(enumerate flov-attr over return-attribute-list(check-flow) do

store-attribute(check-flow, flow-attr, undefined)));
return-tuple <- <’valid, ({I>

else
format (true, "Process cannot be executed.

All in-flows are not defined. %");
return-tuple <- <’invalid, {I>)

else

if intflows-valid then return-tuple <- <’valid,[]>
else return-tuple <- <’invalid,[1>);
return-tuple

ARA%
function DETERMINE-STAFF-TRANS(dowhat : symbol) : return-values =
let (int-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
[<>TRARSACTION, *«TRANSACTION-1>],

ext-flow-set : seq(tuple(flow~type : symbol, flov-name : symbol)) =
1,

313

intflows-valid : boolean = false,
check-flow : object = undefined,
return-tuple : return-values = <’invalid,[1>)

(if size(int-flow-set) = 0 then intflows-valid <~ true
else

(enumerate flow over int-flow-set do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

if defined?(retrieve-attribute(check-flow, flow-attr)) then
intflows-valid <- true)));

(if dowhat = ’execute then
(if intflows-valid then %% if valid, check ext inflows
(enumerate flow over ext-flow-tet do
check-flow <- find-object(flow.flow-type, flov.flow-name);
(if (ex (x) (x in return-attribute-list(check-flow) &
undefined? (retrieve-attribute(check-flow, x)))) then
format (true, "Enter data for “A~%", name(check-flow));

check-flow <- modify-object(check-flow)));
DETERMINING-STAFF();

(enumerate flow over concat(int-flow-set, ext-flow-set) do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

store-attribute(check-flow, flow-attr, undefined)));
return-tuple <- <’valid, [’REMOVE-USER, ’ADD-USER,
*LIST-BOOKS-BY-BORROWER, ’LIST-BOOKS-BY-AUTHOR,
’LIST-BOOKS-BY-SUBJECT, ’LIST-LAST-BORROWER,

'RETURN-BOOK, ’CHECK-OUT-BOOK, ’REMOVE-BOOK, ’ADD-BOOK]>
else

format (true, "Process cannot be executed.

All in-flows are not defined. %");
return-tuple <- <’invalid, []>)
else
if intflows-valid then return-tuple <- <’valid, (1>
else return-tuple <- <’invalid, []1>);
return-tuple

%%
function DETERMINE-TRANS-TYPE(dowhat : symbol) : return-values =
let (int-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
[<’USER, ’sUSER-TYPE-1>],
ext-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
[<’TRANSACTION, > +NEW-TRANS>],
intflows-valid : boolean = false,
check-flow : object = undefined,
return-tuple : return-values = <’invalid,[]>)

(if size(int-flow-set) = 0 then intflovs-valid <- true
else

(enumerate flow over int-flow-set do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

if defined?(retrieve-attribute(check-flow, flow-attr)) then
intflows-valid <- true)));

314

(if dovwhat = ’execute then
(if intflowe-valid then %% if valid, check ext inflows
(enumerate flow over ext-flow-set do
check-flow <- find-object(flovw.flow-type, flow.flov-name);
(if (ex (x) (x in return-attribute-list(check-flow) &
undefined?(retrieve-attribute(check-flov, x)))) then
format (true, "Enter data for ~“A"%", name(check-flow));
check-flow <- modify-object(check-flow)));
DETERMIRE-TRANSACTION();

(enumerate flow over concat(int-flow-set, ext-flow-set) do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

store-attribute(check-flow, flow-attr, undefined)));
return-tuple <- <’valid, [’DETERMINE-USER-TRAKS, 'DETERMINE-STAFF-TRANS]>
else
format (true, "Process cannot be executed.
All in-flows are not defined. %");
return-tuple <- <’invalid, [1>)
else
if intflows-valid then return-tuple <- <’valid, (1>
else return-tuple <- <’invalid, (1>);
return-tuple

AAN%
function SET-USER-TYPE(dowhat : symbol) : return-values =
let (int-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
i1,
ext-flow-set : seq(tuple(flow-type : symbol, flow-name : symbol)) =
[<’FLOW-NAME, ’ *USER-NAME-1>],
intflows-valid : boolean = false,
check-flow : object = undefined,
return-tuple : return-values = <’invalid,[]>)

(if size(int-flow-set) = 0 then intflows-valid <- true
else
(enumerate flovw over int-flow-set do
check-flow <- find-object(flow.flow~type, flovw.flow-name);
(enumerate flow-attr over return-attribute-list(check-flow) do
if defined?(retrieve-attribute(check-flow, flow-attir)) then
intflows-valid <~ true)));

(if dowhat = ’execute then
(if intflows-valid then %% if valid, check ext inflows
(enumerate flow over ext-flow-set do
check-flow <- find-object(flow.flow-type, flow.flow-name);
(if (ex (x) (x in return-attribute-list(check-flow) &
undefined? (retrieve-attribute(check-flow, x)))) then
format (true, "Enter data for “A"%L", name(check-flow));

check-flow <~ modify-object(check-flow)));

SETTING-USER-TYPE();

(enumerate flow over concat(int-flow-set, ext-flow-set) do

check-flow <- find-object(flov.flow-type, flov.flov-name);
(enumerate flow-attr over return-attribute-list(check-flow) do

315

store-attribute(check-flow, flov-attr, undefined)));

return-tuple <- <’valid, [’DETERMINE-TRANS-TYPE]>

else
format (true, "Process cannot be executed.

All in-flows are not defined. %");

return-tuple <- <’invalid, []>)

else
if intflows-valid then return-tuple <- <’valid, [J>
else return-tuple <- <’invalid,[1>);

return-tuple

pyays
function sim() =
let (pfunction : return-values = undefined,
done : boolean = false,
reply : integer = undefined,
test : return-values = undefined,
valid-procs : seq(symbol) = [],
init-procs : seq(symbol) = [’SET-USER-TYPE])

reply <- Make-Menu(init-procs,
"Choose one of these processes to initialize the simulation:");
(if Reply <= size(init-procs) then
pfunction <- funcall(init-procs(reply), ’execute);
vhile “done do
valid-procs <- [];
(if pfunction.validity = °’valid then
(if size(pfunction.next-procs) > 0 then
(enumerate proc over pfunction.next-procs do
test <- funcall{proc, ’check);
(if test.validity = ’valid then
valid-procs <- append(valid-procs, proc)));
reply <- Make-Menu(valid-procs,
"Select a process that may potentially execute at this point:");
(if Reply <= size(valid-procs) then
pfunction <- funcall(valid-procs(reply), ’execute)
elseif Reply = size(valid-procs)+2 then

done <- true) %% selects quit
else pfunction.next-procs <~ init-procs)
else %% not valid process

done <- true))

%%%4 Defines function for erasing all objects in Refine’s database.
%%% Execute this function before you reload this file if you do not use
%%% the convert process.

function clear-objects() =

(enumerate obj over [obj | (obj : LIBRARY) LIBRARY(obj)] do
erase-object (obj))

316

Appendiz F. OML User’s Manual

F.1 Synopsts

This guide describes how to generate an executable specification from an OML specification.
OML was specifically designed to directly and intuitively model all components of ERMs, DFMs,
and STMs in a formal language syntax. OML’s formal language representation enables OML

specifications to be automatically translated into an executable form.

F.2 Required Software

The following software is required to support the translation of an OML specification into an
executable REFINE specification. The order in which the software is compiled and loaded into the

REFINE environment is important and should be performed in the following order:

Software Function
DIALECT REFINE’s language manipulation tool
oml-dm.re OML’s domain model
omi-gm.re OML’s grammar
lisp-utilities.lisp Support functions written in Lisp
read-utilities.re I/O support functions
obj-utilities.re Object manipulation support functions
modify-obj.re Object modification support functions
r-lib.re Runtime library functions
trans-oml.re Translates OML spec into an executable

Table 6. Software Required to Support OML’s Translation and Execution

We have developed a lisp function to automatically compile and load these files into REFINE.

If desired, this function can be used by loading the file “init.lisp” and typing “(init)” at the REFINE

317

command line. All of the above mentioned files are located on the hawkeye server at the Air Force

Institute of Technology.

F.3 Assumptions

The OML parsing and translation software was developed using the REFINE environment.
The REFINE environment is designed to execute on a UNIX workstation and uses GNU Emacs for
its user interface. Therefore, it is assumed that both REFINE and Emacs are available. Further it

is assumed that the user has some familiarity with REFINE and Emacs.

The OML specification must be developed prior to using the translation tool. The description
of OML provided in Chapter IV and Appendix A, as well as the two sample problems provided in

Appendices D and E, provide sufficient guidance for developing an OML specification.

The user’s problem must be informally modeled in terms of ERMs, STMs, and DFMs prior
to developing the OML specification. Also, once the executable specification has been generated,

these diagrams should be available for reference while testing the executable specification.

F.4 Generating an Ezecutable Specification

Once the OML specification has been developed, the steps listed in Table 7 should be taken

to convert it into an executable specification.

F.5 Using the Ezecutable OML Specification

By running the executable specification, the user will be able to validate that his informal
specification correctly specifies his requirements. Inconsistencies between requirements in the infor-
mal specification will result in an error, and a supporting error message will be displayed. Incorrect
requirements will result in the executable not behaving in the manner intended by the user. Cor-

rections to these errors should be made to the OML specification (either manually or through the

318

Next Step

Action

Result

Initialize REFINE
(REFINE is initialized from
the Emacs editor)

Type emacs & (in cmdtool
window),

Type Esc X run-refine

Emacs window will appear,

Emacs window will split and
REFINE will initialize on the
right

Load the translation software

Type (Load“init.lisp”),
Type (init)

Loads Dialect,

Loads translation software,
Loads runtime library func-
tions,

Loads lisp functions

Convert the OML specifica-
tion into an executable RE-

FINE specification

Type (convert “<your OML

file name>")

Parses the OML spec into an
AST,

Translates the info in the
AST into a REFINE exe-
cutable specification,
Compiles and Loads the Exe-
cutable specification,

Tells the user to type (sim) to
begin the simulation

Table 7. How to Generate an Executable Specification

OML specification. The REFINE executable specification is not intended to be modified.

front end tool) and a new executable specification should be produced by converting the modified

If your executable specification terminates because of an error in the specification, an error

message will be displayed on the screen. Take note of the state or process that was executing just
prior to the error. Use the information provided in the error message, your knowledge of the last

process or state to execute, and your informal specification to locate the error in your specification.

Also note, if the executable specification prompts the user to enter character data (letters

and words) into the system, future reference to these characters will be case sensitive.

Once an executable specification has been created, it can be executed at any time. The user

319

does not have to execute it immediately. If the user wants to log out of his account and then execute

it at a later time, the executable does not have to be recreated. Prior to executing a specification,
all of the software mentioned in Section F.2 must be loaded first ezcept oml-dm.re, oml-gm.re, and
trans-oml.re. These files do not have to be loaded unless the user intends to convert an OML

specification into an executable specification.

F.6 Diagnosing Errors

This section is intended to help the OML user correct the types of errors he is likely to
encounter. Errors in the OML specification can be revealed at three different stages: during parse,
during compilation of the executable, or during execution. These error messages were obtained by
converting the file “test.spec”. “Test.spec” has the original errors commented out and the corrected

statements right below the error.

F.6.1 FErrors detected while parsing. Syntax errors in the OML specification will be de-
tected during this stage of the translation. These errors will be caught immediately by the OML
compiler and REFINE’s interactive mode will direct you to the exact location where the syntax error

occurred. The user should refer to Appendix A for a complete description of OML’s syntax.

F.6.2 Errors detected during compilation. The errors detected during the compilation
of the executable specification are the result of semantic errors in the OML specification. The
current translation software does not perform semantic checking. It assumes the user has written
a semantically correct OML specification. Thus, either semantic checking should be added to the
translation software or else semantic checking should be performed by the elicitation tool (not yet

built).

These errors are revealed after the OML specification is converted into an executable spec-
ification. However, when the executable specification is compiled, REFINE may detect an error

causing an error message to be displayed to the screen.

320

The following are examples:

Type checking...succeeded......
REFINE compiling MOTOR-ON...

Type checking...
Warning: 1 local type conflict detected:

At program part: IGNITION = ’OFF
Tried to match type: OBJECT
with type: symbol

MOTOR~ON did not compile correctly.

The above error resulted from an improper reference to the status attribute of the IGNITION
entity. The correct semantic should be IGNITION.STATUS = 'OFF. Note: REFINE notifies the

user that the error occurred while compiling the MOTOR-ON state function.

Warning: IDLE did not link correctly. The unlinked reference is:
FIVE-MINUTE-TIMER

REFINE compiling IDLE...

Type checking...

Warning: Unknown variable FIVE-MINUTE-TIMER in
FIVE-MINUTE-TIMER.STATUS

IDLE did not compile correctly.scavenging...done

The above error resulted from using an incorrect variable name. REFINE notified the user
that the error occurred in the IDLE state. In this case, FIVE-MINUTE-TIMER is not the correct

name of an entity object. The correct name should have been FIVE-MIN-TIMER.

These are two examples of errors found during compilation of the executable spec. The file

“test.spec” shows the original error and the corrected form.

321

F.6.8 Errors revealed during ezecution. These errors are detected by executing the spec-
ification. These errors reveal inconsistencies, incorrectness, or incompleteness in the user’s OML

specification.

(sim)
The current state of the system is OFF
VALID STATE SPACE
"Events that can occur:"
1) SWITCH-TURNED-ON
2) Continue
3) Quit
1
Error: attempt to call ‘RE:*UNDEFINED*’ which is an undefined function.

Restart actions (select using :continue):
0: prompt for a new function, instead of ‘RE:*UNDEFINED*’.

Here, the execution terx.ninated immediately. When this type of error message occurs
(RE:*UNDEFINED*), it generally means that information is missing from the specification. In
this case, the system crashed because the OML specification did not have entries in the Relation
Table to associate an external event with its behavior. This type of error should eventually be

caught by the semantic checking prior to the specification’s execution.

322

AR A s SR L e - S S R SU

(sim)
The current st~te of the system is OFF
VALID STATE SPACE
"Events that can occur:"
1) SWITCH-TURNED-ON
2) Continue
3) Quit
1
The current state of the system is IDLE
INVALID STATE SPACE
The system’s current state space conflicts with
the state space required to be in the above mentioned state. Here are the

current attribute values in the system. Compare them with the required values

specified in your specification to find the inconsistencies.
*WATER . THERMOSTAT-TEMP : €0

*AIR. THERMOSTAT-TEMP : 60

*FIVE-SEC-TIMER. TIMER-STATUS : OFF
*FIVE-MIN-TIMER.TIMER-STATUS : OFF
*QIL-VALVE.VALVE-STATUS : CLOSED
*WATER-VALVE.VALVE-STATUS : CLOSED
*COMBUSTION-SENSOR . SENSOR-STATUS : SAFE
*FUEL-SENSOR . SENSOR-STATUS : SAFE
*CONTROLLER . CONTROLLER-ENTITY-TR : 70
*CONTROLLER . CONTROLLER-ENTITY-TW : 180
*IGNITION.IGNITION-ENTITY-STATUS : OFF

*MOTOR . MOTOR-ENTITY-STATUS : OFF

*MOTOR . MOTOR-ENTITY-SPEED : INADEQUATE
*MASTER-SWITCH.MASTER-SWITCH-ENTITY-STATUS : ON

These kinds of errors ar(; a result of inconsistent requirements in the specification. In this case,
quite a bit of guidance is given to the user. We are told that the error occurred while in the IDLE
state. The problem occurred because the system’s current air temperature was 60 degrees and the
controller.tr temperature was 70, but in order to enter the IDLE state, IDLE’s state space required

the air temperature to be greater than controller.tr-2. Thus, the system has a contradiction. As it

turned out, this was an unnecessary requirement and it was removed from the specification.

323

F.7 Test Specification

[AAAAAAYS

.,../..l
Wik
W
W
Wk
W%
W
Wk
Whh
./.. .'.
Wl
Wt
W
Wk

File-Name :

Authors :

Purpose :

I I Rl Wl W R I LRI AL S ARSI IRRR IR L L%

test.spec (Home-Heater Specification)

Capt Mary Boom, Capt Brad Mallare

This home heater specification shows the stepwize
corrections made as the translated OML specification was verified

through execution of the specification.

Unified Abstract Model Components :

Entities, Relationships, States, Events, Behaviors, and

Relation-Tables

Wk
W%
%A%
Wk
Wk
Wk
YA
"k
Wik
Wi
YA
Wik
Wk
Wik

VYA YA AN YA NN Y A AN AN YA N Y NN S NN AN SN AN Y NN S AN N Y AN YA A AN Y VA S YA oA

specification test-~heater

%%%%% ENTITIES

SENSOR class-of entity

type : external
parts
status : symbol range {safe, unsafe}

FUEL-SENSOR instance—of SENSOR
values

status :

safe

COMBUSTION-SERSOR instance-of SENSOR
values

status :

safe

VALVE class-of entity

type : external
parts
status : symbol range {open, closed}

WATER-VALVE instance-of VALVE
values

status :

closed

OIL-VALVE instance-of VALVE
values

status :

closed

TIMER class-of entity

type :

parts

external

324

status : symbol range {off, on}

FIVE-MIN-TIMER instance—-of TIMER
values
status : off

FIVE-SEC-TIMER instance—of TIMER
values
status : off

THERMOSTAT class-of entity
type : external
parts
temp : integer range {0 .. 280}

AIR instance-of THERMOSTAT
values
temp : 60

WATER instance-of THERMOSTAT
values
temp : 60

MASTER-SWITCH instance-of entity
type : extermal
parts
status : symbol range {on, off} init-val oft

MOTOR instance-of entity
type : external

parts
status : symbol range {on, off} init-val off;
speed : symbol range {adequate, inadequate} init-val inadequate

IGNITION instance-of entity
type : external
parts
status : symbol range {on, off} init-val off

CONTROLLER instance-of entity
type : external

parts
tr : integer range {32 .. 130} init-val 70; %% preset air temp
tw : integer range {32 .. 280} init-val 180 ¥%) preset water temp

%4%%% RELATIONSHIPS %%%U%%
ACTIVATES instance-of relationship

type : general
cardinality : 1-1

325

MONITORS instance-of relationship
type : general
cardinality : 1-1

CONTROLS-FLOW instance-of relationship
type : general
cardinality : 1-1

SWITCHES instance-of relationship
type : general
cardinality : 1-1

SIGNALS instance-of relationship
type : general
cardinality : 1-1

ICO instance-of relationship
type : ICO
cardinality : 1-1

%A% STATES %U%UU%%UY

OFF instance-of state
state-space : master-switch.status = off

IDLE instance-of state
state-space : master-switch.status = on;

% air.temp > controller.tr - 2; % unnecessary requirement
% five-minute-timer.status = off; % incorrect name
five-min-timer.status = off;
five-sec-timer.status = off

MOTOR-ON instance-of state
state-space : master-switch.status = on;

motor.status = on;
motor.speed = inadequate;
air.temp < controller.tr - 2;

% ignition = off; % incorrect attribute reference
ignition.status = off;
oil-valve.status = closed

WATER-HEATING instance-of state

state-space : master-switch.status = on;
air.temp < controller.tr + 2;
motor.status = on;
motor.speed = adequate;
water.temp < controller.tw;
fuel-sensor.status = safe;
combustion-sensor.status = safe;
water-valve.status = closed;

326

oil-valve.status = open

RUNNING instance-of state
state-space : master-switch.status = on;

air.temp < controller.tr + 2;

motor.status = on;
motor.speed = adequate;
water.temp > controller.tw;
fuel-sensor.status = safe;

combustion-sensor.status = safe;

water-valve.status = open;
oil-valve.status = open

SHUTDOWN instance-of state
state-space : master-switch.status = on;

air.temp >= controller.tr + 2;

motor.status = on;
fuel-sensor.status = safe;

combustion-sensor.status = safe;

water-valve.status = open;
oil-valve.status = closed;
five-sec-timer.status = on

WAITSMINUTES instance-of state
state-space : master-switch.status = on;
motor.status = off;
fuel-sensor.status = safe;

combustion-sensor.status = safe;

water-valve.status = closed;
oil-valve.status = closed;
ignition.status = off;
five-sec-timer.status = off;
five-min-timer.status = on

HOLD instance-of state
state-space : ignition.status = off;
five-sec~timer.status
five-min-timer.status
motor.status = off;
water-valve.status = closed;
oil-valve.status = closed;

off;
off;

% combustion-sensor.status = unsafe;

% fuel-sensor.status = unsafe

%h%%Y% EVENTS %A%%Y%
%% Internal Events

MASTER-SWITCH-ON instance-of event
type: internal

327

% master switch off & safe
% sensors also gets to here

MOTOR-TURNED-ON instance-of event
type: internal

OIL-IGRITED instance-of event
type: internmal

WATER-VALVE-OPENED instance-of event
type: internal

DONE-HEATING-WATER instance-of event
type: internal

MOTOR-TURNED-OFF instance-of event
type: intermal

DONE-WAITING instance-of event
type: intermal

MASTER-SWITCH-OFF instance-of event
type: internal

ABNORMAL-FUEL instance-of event
type: internal

ABNORMAL-COMBUSTIOK instance-of event
type: intermal

SYSTEM-IS-RESET instance-of event
type: intermal

SYSTEM-IS-OFF instance~of event
type: internal

%% External Events

SWITCH-TURNED-ON instance-of event
type: external

AIR-TEMP-BELOW-PRESET instance-of event
type: extermal

ADEQUATE-MOTOR-SPEED instance-of event
type: external

WATER-TEMP-ABOVE-PRESET instance-of event
type: external

AIR-TEMP-ABOVE-PRESET instance-of event
type: external

328

FIVE-SEC-TIMER-EXPIRES instance-of event
type: external

FIVE-MIN-TIMER-EXPIRES instance-of event
type: external

SWITCH-TURNED-OFF instance-of event
type: external

UNSAFE-COMBUSTION-SENSOR instance-of event
type: external

UNSAFE-FUEL-SENSOR instance-of event
type: external

RESET-SYSTEM instance-of event
type: external

SYSTEM-TURNED-OFF instance-of event
type: external
%h%%%% BEHAVIORS %%%%%
FURNACE-OFF instance-of behavior
master-switch.status, = on
-->
event, MASTER-SWITCH-ON
YA YA

FURNACE-IDLE instance-of behavior

air.temp, < controller.tr - 2, dont-care;
master-switch.status, = om, = off

-—>

motor.status, on, off

event, MOTOR-TURNED-ON, MASTER-SWITCH-OFF

WAk

FURNACE-MOTOR-ON instance-of behavior

motor.speed, dont-care, = adequate;
master-switch.status, = off, = on

-—>

ignition.status, off, on;
oil-valve.status, closed, open;
motor.status, off, on

event, MASTER-SWITCH-OFF, OIL-IGNITED

329

WARLA

FURNACE-WATER-HEATING instance-of behavior

Water.temp, > controller.tw, dont-care, dont-care, dont-care;
master-switch.status, = on, = off, dont-care, dont-care;
fuel-sensor.status, = safe, dont-care, = unsafe, dont-care;
combustion-sensor.status, = safe, dont-care, dont-care, = unsafe
-—>

water-valve.status, open, closed, closed, closed;
oil-valve.status, open, closed, closed, closed;
five-sec-timer.status, off, on, on, on

event, WATER-VALVE-OPENED, MASTER-SWITCH-OFF, ABNORMAL-FUEL,
ABNORMAL-COMBUSTION
YYAYAA

FURNACE-RUNNING instance-of behavior

air.temp, >= controller.tr + 2, dont-care, dont-care, dont-care;
fuel-sensor.status, = safe, = unsafe, dont-care, dont-care;
combustion-sensor.status, = safe, dont-care, = unsafe, dont-care;
master-switch.status, = om, = om, = on, = on

-=>

oil-valve.status, closed, closed, closed, closed;
five-sec-timer.status, on, on, on, on

event, DONE-HEATING-WATER, ABNORMAL-FUEL, ABNORMAL-COMBUSTION,
MASTER-SWITCH-OFF

PN

FURNACE-SBUTTING-DOWN instance-of behavior

five-sec-timer.status, = off, = off, = off;
fuel-sensor.status, = safe, = unsafe, dont-care;
combustion-sensor.status, = safe, dont-care, = unsafe

->

motor.status, off, off, off;
water-valve.status, closed, closed, closed;
five-min-timer.status, on, oft, off;
ignition.status, off, off, off

event, FIVE-SEC-TIMER-EXPIRES, ABNORMAL~SHUTDOWN, ABNORMAL-SHUTDOWN

PYAAAA

FURNACE-WAITING instance-of behavior

five-min-timer.status, = off
-—>
event, FIVE-MIN-TIMER-EXPIRES

330

PY A

FURNACE-ABNORMAL instance-of behavior

fuel-sensor.status, = sgafe, = safe;
combustion-sensor.status, = safe, = safe;
master-switch.status, = off, = on

-—>

event, SYSTEM-IS-OFF, SYSTEM-IS-RESET

YUAAAYA%Y%%Y BEHAVIORS - EVENT ACTIONS %%%A%U%%%

SWITCH-TURNED-ON-BEH instance-of behavior
true
-—>
master-switch.status := on
event none

AIR-TEMP-BELOW-PRESET-BEH instance-of behavior
true
-
air.temp := controller.tr - 3
event none

ADEQUATE-MOTOR-SPEED-BEH instance-of behavior
true
-->
motor.speed := adequate
event none

WATER-TEMP-ABOVE-PRESET-BEH instance-of behavior
true
-—>
water.temp := controller.tw + 1
event none

AIR-TEMP-ABOVE-PRESET-BEH instance-of behavior
true
-=>
air.temp := controller.tr + 3
event none

FIVE-SEC-TIMER-EXPIRES-BEH instance-of behavior
true
-—>
five-sec-timer.status := off
event none

FIVE-MIN-TIMER-EXPIRES-BEH instance-of behavior

true
-->

331

five-min-timer.status := off
event none

SWITCH-TURNED-OFF-BEH instance-of behavior
true
-—>
master-switch.status := off
event none

UNSAFE~COMBUSTION-SENSOR-BEH instance-of behavior
true
-—>
combustion-sensor.status := unsafe
event none

UNSAFE-FUEL-SENSOR~-BEH instance—of behavior
true
-——>
fuel-sensor.status := unsafe
event none

RESET-SYSTEM-BEH instance-of behavior
true
-—>
fuel-sensor.status := safe &
combustion-sensor.status := safe &
master-switch.status := on
event none

SYSTEM-TURNED-OFF-BEH instance-of behavior
true
-2
fuel-sensor.status := safe &
combustion-sensor.status := safe &
master-switch.status := oft
event none

TABLE1 instance-of relation-table
%%FROM-0BJECT ASSOCIATION TO-OBJECT

%% STATE-EVENT RELATIONSEIPS

OFF, MASTER-SWITCH-ON, IDLE;

IDLE, MOTOR-TURNED-ON, MOTOR-ON,;
MOTOR-ON, OIL-IGNITED, WATER-HEATING;
WATER-HEATING, WATER-VALVE-OPENED, RUKNING;
RUNNING, DONE~HEATING-WATER, SHUTDOWN;
SHUTDOWN, MOTOR-TURNED-OFF, WAITSMINUTES;
WAITSMINUTES, DONE-WAITING, IDLE;

332

IDLE, MASTER-SWITCH-OFF, OFF;
MOTOR-ON, MASTER-SWITCH-OFF, OFF;
WATER-HEATING, MASTER-SWITCH-OFF, SHUTDOWN ;
WATER-HEATING, ABKORMAL-FUEL, SHUTDOWN ;
WATER-HEATING, ABNORMAL-COMBUSTION, SHUTDOWN;
RUNNING, MASTER-SWITCH-OFF, SHUTDOWK;
RUNNING, ABNORMAL-FUEL, SHUTDOWN ;
RUNNING, ABNORMAL-COMBUSTION, SHUTDOWK ;
SHUTDOWN, ABNORMAL-SHUTDOWN, HOLD;

HOLD, SYSTEM-IS-RESET, IDLE;

HOLD, SYSTEM-IS-OFF, OFF;

%% STATE- EXTERNAL-EVENT RELATIONSHIPS

OUTSIDE, SWITCH-TURNED-ON, OFF;

OUTSIDE, AIR-TEMP-BELOW-PRESET, IDLE;

OUTSIDE, ADEQUATE-MOTOR-SPEED, MOTOR-OX;
DUTSIDE, WATER-TEMP-ABOVE-PRESET, WATER-HEATING;
OUTSIDE, AIR-TEMP-ABOVE-PRESET, RUENING;
OUTSIDE, FIVE-SEC-TIMER-EXPIRES, SHUTDOWNK ;
OUTSIDE, FIVE-MIN-TIMER-EXPIRES, WAITSMINUTES;
OUTSIDE, SWITCH-TURNED-~OFF, IDLE;

OUTSIDE, SWITCH-TURKED-OFF, MOTOR-ON;
OUTSIDE, SWITCH-TURNED-OFF, WATER-HEATING;
OUTSIDE, SWITCH-TURNED-OFF, RUBNING;
OUTSIDE, UNSAFE-COMBUSTION-SENSOR, WATER-HEATING;
OUTSIDE, UNSAFE-COMBUSTION-SENSOR, RUNNING;
OUTSIDE, UNSAFE-FUEL-SENSOR, WATER-HEATING;
OUTSIDE, UNSAFE-FUEL-SENSOR, RUNNING;
QUTSIDE, RESET-SYSTENM, HOLD;

OUTSIDE, SYSTEM-TURNED-OFF, HOLD;

%% ENTITY-RELATIONSHIPS

CONTROLLER, ACTIVATES, MOTOR;
CONTROLLER, MONITORS, MOTOR;
CONTROLLER, MONITORS, THERMOSTAT;
CONTROLLER, CONTROLS-FLOW, VALVE;
MASTER-SWITCH, SWITCHES, CONTROLLER;
FUEL-SENSOR, SIGNALS, CONTROLLER;
COMBUSTION-SENSOR, SIGNALS, CONTROLLER;

%%, EVENT-BEHAVIOR-RELATIONSHIPS

%% these realtion-table entries were initially missing, causing
%% the specification to terminate because external-events could not
%% be associated with their behaviors.

SWITCH-TURNED-ON, ICO, SWITCH-TURNED-ON-BEH;
AIR-TEMP-BELOW-PRESET, ICO, AIR-TEMP-BELOW-PRESET-BEH;
ADEQUATE-MOTOR-SPEED, ICO, ADEQUATE-MOTOR-SPEED-BEH;

333

WATER-TEMP-ABOVE-PRESET,
AIR-TEMP-ABOVE-PRESET,
FIVE-SEC-TIMER-EXPIRES,
FIVE-MIN-TIMER-EXPIRES,
SWITCH-TURNED-OFF,
UNSAFE-COMBUSTION-SENSOR,
UNSAFE-FUEL-SENSOR,
RESET-SYSTEN,
SYSTEM-TURNED-OFF,

ICOo,
1¢0,
Ico,
Ico,
Ico,
ICo,
Ico,
IcCOo,
ICOo,

%% STATE~BEHAVIOR RELATIONSHIPS

OFF, Ico,
IDLE, Ico,
MOTOR-OK, Ico,
WATER-HEATING, ICO,
RUNNIXG, Ico,
SHUTDOWN, ICO,
WAITEMINUTES, ICO,
HOLD, Ico,

WATER-TEMP-ABOVE-PRESET-BEH;
AIR-TEMP-ABOVE-PRESET-BEH;
FIVE-SEC-TIMER-EXPIRES-BEH;
FIVE-MIN-TIMER-EXPIRES-BEH;
SWITCH-TURNED-OFF-BEH;
UNSAFE-COMBUSTION-SENSOR-BEH;
UNSAFE-FUEL-SENSOR-BEH;
RESET-SYSTEM-BEH;
SYSTEM-TURNED-OFF-BEH;

FURNACE-OFF ;
FURNACE-IDLE;
FURNACE-MOTOR-ON;
FURNACE-WATER-HEATING;
FURNACE-RUNKING;
FURNACE-SHUTTING-DOWE;
FURNACE-VAITING;
FURNACE-ABNORMAL

334

10.

11.

12.

13.

14.

15.

16.

17.

18.

Bibliography

. Albrecht, Paul F. and others. “Source-to-Source Translation: Ada to Pascal and Pascal to

Ada,” ACM SIGPLAN Notices, 15(11):183-193 (November 1980).

. Balzer, Robert. “Software Technology in the 1990’s: Using a New Paradigm,” IEEE Compuler,

16(11):39-45 (November 1983).

Balzer, Robert and Neil Goldman. “Principles of Good Software Specification and their Impli-
cations for Specification Language,” IEEE Conference on Specifications of Reliable Software,
7(2):58-67 (March 1979).

Berzins, Valdis and Luqi. “An Introduction to the Specification Language Spec,” IEEFE Soft-
ware, 7(2):74-84 (March 1990).

. Bjgrner, Dines. “Programming in the Meta-Language: A Tutorial.” The Vienne Development

Method: The Meta-Language edited by Dines Bjgrner and CLff B. Jones, Springer-Verlag,
1978.

. Blankenship, Captain Donald D. Generalized Method for Transforming Informal Analysis

Methods to Refine Formal Specifications. MS thesis, School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB OH, December 1991.

. Boehm, Barry W. “Software Engineering,” IEEE Transactions on Computers, C-25(12):1226—

1240 (December 1976).

. Buska, Douglas E. and Mark L. Wilkins. “ADL: A Dynamic Object-Oriented Modeling Lan-

guage,” OOPS Messanger, 2(1):8-27 (January 1991).

. Davis, Alan A. Software Requirements Analysis and Specification. Englewood Cliffs, NJ:

Prentice Hall, 1990.

Douglass, Captain Randal L. Formalization and Ezecutable Simulation of SADT Requirements
Analysis Using the Refine Specification Language. MS thesis, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, December 1991. DTIC Number.

Feather, Martin S. “The Evolution of Composite System Specifications.” Fourth Interna-
tional Workshop on Software Specification and Design. 52-57. Washington, D.C. 20036-1903:
Computer Society Press of the IEEE, April 1987.

Fetzer, James H. “Program Verification: The Very Idea,” Communications of the ACM,
31(9):1048-1063 (September 1988).

Fraser, Martin D., et al. “Informal and Formal Requirements Specification Languages: Bridg-
ing the Gap,” IEEE Transactions on Software Engineering, 17(5):454-465 (May 1991).

Goldsack, S. J., editor. Ada for Specification: Possibililies and Limitations. The Ada Com-
panion Series, New York, New York: Cambridge University Press, 1985.

Greenspan, Sol J. Requirements Modeling: A Knowledge Representation Approach to Software
Requsrements Definition. PhD dissertation, The University of Toronto, Toronto, Canada, 1984.

Guttag, John V., et al. “The Larch Family of Specification Languages,” TEEE Software,
2(5):24-36 (September 1985).

Hurley, Richard B. Decision Tables in Software Engineering. The Van Nostrand Reinhold
Data Processing Series, New York, New York: Van Nostrand Reinhold Co., 1983.

IEEE Computer Society (LCRST, Japan) and Alvey Directorate (UK) ACM SIGSOFT and
Agence de 'Informatique & AFCET (France). Fourth International Workshop on Software
Specification and Design, Washington, D.C. 20036-1903: Computer Society Press of the IEEE,
April 1987.

335

19.

20.

21.

22.

23.

24,

25.
26.

27.

28.

29.

30.

Jones, Cliff B. “The Meta-Language: A Reference Manual.” The Vienna Development Method:
The Meta-Language edited by Dines Bjgrner and Cliff B. Jones, Springer-Verlag, 1978.

Meyer, Bertrand. Object-Oriented Software Consiruction. Prentice Hall International Series
in Computer Science, Englewood Cliffs, NJ: Prentice Hall, 1988.

Reasoning Systems Inc., Palo Alto, CA. DIALECTT™ User’s Guide. For DIALECTT™ Version
1.0 on Sun Comupters.

Reasoning Systems Inc., Palo Alto, CA. REFINETM User’s Guide. For REFINETM Version
3.0.

Rumbaugh, James, et al. Object-Oriented Modeling and Design. Englewood Cliffs, NJ: Pren-
tice Hall, 1991.

Shlaer, Sally and Stephen J. Mellor. Object-Oriented Systems Analysis, Modeling the World
in Data. Englewood Cliffs, NJ: Yourdon Press, 1988.

Spivey, J. M. The Z Notation: A Reference Manual.

Toetenal, Hans, et al. “Structured Analysis - Formal Design, using Stream & Object Ori-
ented Specification,” Software Engineering Notes, 15(4):118-127 (September 1990). From the
Proceedings of the ACM SIGSOFT International Workshop on Formal Methods in Software
Development.

Tse, T.H. and L. Pong. “An Examination of Requirements Specification Languages,” The
Computer Journal, 34(2):143-152 (April 1991).

Wasserman, Anthony I, et al. “The Object-Oriented Structured Design Notation for Software
Design Representation,” IEEE Computer, 0(0):50-63 (March 1990).

Yourdon, Edward. Modern Structured Analysis. Yourdon Press Computing Series, Englewood
Cliffs, NJ: Prentice Hall, 1989.

Zave, Pamela. “An Insider’s Evaluation of PAISLey,” IEEE Transactions on Software Engi-
neering, 17(3):212-225 (March 1991).

336

Vita

Captain Mary Margaret Boom, nee Zelasko, was born on 4 May 1955 in Buffalo, New York
and graduated from Archbishop Carroll High School in Buffalo in 1973. Mary enlisted in the
Air Force in 1973, and following basic training attended technical school for avionics maintenance
(AFSC 328X4) at Keesler AFB, Mississippi. Upon completion of training, she was assigned to K. I.
Sawyer AFB, Michigan where she maintained B-52Gs and KC-135As. Subsequent assignments took
her to Kunsan AFB, Korea and George AFB, California to work on F-4s. In 1977, she retrained in
general accounting (AFSC 672X1) at Sheppard AFB, Texas. She was transferred to Sembach AFB,
Germany in 1979 and began attending classes through the University of Maryland. In 1983, Mary
transferred to University of Oklahoma in Norman, Oklahoma where she completed her Bachelor
of Science in Electrical Engineering (BSEE) in August of 1986. After graduation, TSgt Boom
attended Officer Training School (OTS) at Lackland AFB, Texas and received her commission on
19 November 1986. She was then sent to Keesler AFB, Mississippi to attend the communications-
computer course for 492X officers. After completion, she was assigned to Offutt AFB, Nebraska.
While assigned there, Mary maintained interface software and provided program management and
system support for the Strategic Air Command Digital Network (SACDIN). She also served as an
Software Engineering Instructor for SAC programmers. In May 1991, Captain Boom entered the
Air Force Institute of Technology at Wright-Patterson AFB, Ohio, in pursuit of a Master of Science

degree in Computer Engineering.

Permanent address: 89 Currier Street
Buffalo, New York 14212

337

Vita

Captain Bradley Mallare was born on 22 October 1966 in Jamestown, New York. Upon
graduation from Jamestown High School in June 1984, he received a four year Air Force ROTC
scholarship to pursue an engineering degree. In May 1988, Brad graduated with honors from
Clarkson University, Potsdam, New York, with a Bachelor of Science degree in Electrical and
Computer Engineering. He was honored as a Distinguished Graduate (DG) from ROTC and was
awarded a Regular Commission into the Air Force upon graduation. His first assignment was to
the Electronics Systems Division (ESD) at Hanscom AFB, MA where he served as the Software
Testing Engineer for the Command Center Processing and Display System - Replacement (CCPDS-
R) Program. In May 1991, Capt Mallare entered the Air Force Institute of Technology (AFIT)
at Wright-Patterson AFB, Ohio, to pursue a Master of Science degree in Computer Engineering.
Upon graduation in December 1992, Mallare will be assigned to the Wright Laboratories at Wright-

Patterson AFB.

Permanent address: 93 Falconer Street
Jamestown, New York 14701

338

